K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

ai giúp mình với ạ ngaingung

25 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 300 giải nhanh nha đã có 241 người nhận rồi

OKuk

Ta có: \(A=\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right):\left(\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{a}}{a+b+2\sqrt{ab}}\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right):\left(\frac{a\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)^2}-\frac{a\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)^2}\right)\)

\(=\frac{a-\sqrt{ab}-a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\frac{a\sqrt{a}+a\sqrt{b}-a\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)

\(=\frac{-\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{a\sqrt{b}}\)

\(=\frac{-\sqrt{a}\cdot\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\frac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}\right)^2\cdot\sqrt{b}}\)

\(=\frac{-\sqrt{a}-\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\)

9 tháng 6 2017

a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)

<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)

<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)

<=>\(a+b\ge2\sqrt{ab}\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)

19 tháng 9 2020

Áp dụng BĐT Cô - si ta có :

\(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a.\left(b+c\right)}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)

Chứng minh tương tự ta có :

\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng vế với vế của các BĐT cùng chiều ta có :

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy BĐT được chứng minh !

29 tháng 9 2020

Dấu "=" xảy ra <=> a = b + c; c = a + b ; b = a + c => vô lí => Không thể xảy ra dấu "=" được

24 tháng 6 2017

1) \(\frac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\cdot\left|a-b\right|=a^2\)(Vì a > b => a - b > 0 và a^2 luôn dương với mọi a)

2) \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì \(a\ge0\))

3) \(\sqrt{13}a\cdot\sqrt{\frac{52}{a}}=\frac{a\cdot\sqrt{13}\cdot\sqrt{4\cdot13}}{\sqrt{a}}=\frac{2a\cdot\sqrt{13\cdot13}}{\sqrt{a}}=26\sqrt{a}\)(vì a > 0)

16 tháng 7 2019

a.\(\Rightarrow a^2+3>2\sqrt{a^2+2}\)

\(\Leftrightarrow a^4+9+6a^2>4a^2+8\)

\(\Leftrightarrow\left(a^2+1\right)^2>0\left(LĐ\right)\)

b.Áp dụng BĐT Svarxo:

\(VP\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{b}+\sqrt{a}}=\sqrt{a}+\sqrt{b}=VT\)

16 tháng 7 2019

Thanks Nguyen lần nữa :)))