Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)
b/
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)
b) Giống câu a ?
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)
\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)
\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)
\(=\sqrt{ab}\)
Áp dụng BĐT Cô - si ta có :
\(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a.\left(b+c\right)}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)
Chứng minh tương tự ta có :
\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng vế với vế của các BĐT cùng chiều ta có :
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy BĐT được chứng minh !
Dấu "=" xảy ra <=> a = b + c; c = a + b ; b = a + c => vô lí => Không thể xảy ra dấu "=" được
Áp dụng bđt Cauchy, ta có:
\(\sqrt{\frac{a}{bc}}\)+\(\sqrt{\frac{b}{ca}}\)≥ \(2\sqrt{\sqrt{\frac{ab}{abc^2}}}\)= \(2\sqrt{\sqrt{\frac{1}{c^2}}}\)= \(2\sqrt{\frac{1}{c}}\) (vì c>0)
Tương tự: \(\sqrt{\frac{b}{ca}}\)+\(\sqrt{\frac{c}{ab}}\)≥ \(2\sqrt{\frac{1}{a}}\)
\(\sqrt{\frac{c}{ab}}\)+\(\sqrt{\frac{a}{bc}}\)≥ \(2\sqrt{\frac{1}{b}}\)
Cộng vế theo vế của các bđt với nhau, ta có: \(2\)\(\left(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\right)\text{≥}\)\(2\left(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\right)\)
<=> \(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\text{≥}\)\(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)(đpcm)
Dấu "=" xảy ra <=> a = b = c
Ta có: \(A=\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right):\left(\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{a}}{a+b+2\sqrt{ab}}\right)\)
\(=\left(\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right):\left(\frac{a\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)^2}-\frac{a\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)^2}\right)\)
\(=\frac{a-\sqrt{ab}-a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\frac{a\sqrt{a}+a\sqrt{b}-a\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
\(=\frac{-\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{a\sqrt{b}}\)
\(=\frac{-\sqrt{a}\cdot\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\frac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}\right)^2\cdot\sqrt{b}}\)
\(=\frac{-\sqrt{a}-\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\)
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 300 giải nhanh nha đã có 241 người nhận rồi
OKuk