Qua điểm A nằm ngoài đường tròn (O). Kẻ các tiếp tuyến AC, AB (B,C là tiếp điểm). Gọi I là trung điểm của AC, E là giao điểm thứ 2 của BI với đường tròn. Đường tròn đi qua A, E,C cắt BI tại điểm K khác E. Chứng minh rằng tứ giác ABCK là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.
Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1)
AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC
=> AO vuông góc BC (2)
Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.
Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB
=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB
Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800
=> Tứ giác AIKH nội tiếp đường tròn (đpcm).
b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD
\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC
Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC
=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)
Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)
Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600
<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.
Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)
=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.
Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK
=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
Mình đang thắc mắc chỗ chứng minh \(\widehat{EOC}=\widehat{ECD}\), còn mấy chỗ còn lại mình làm được rồi.