Chứng minh rằng nếu có số tự nhiên N nhỏ hơn ba ước lớn nhất của nó (không kể N) thì N \(⋮\)6. Cảm ơn mọi người nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Luôn có thể phân tích N thành: \(N=p_1^{s_1}.p_2^{s_2}.p_3^{s_3}...p_n^{s_n}\)
Với \(p_1;p_2;...;p_n\)là các số nguyên tô và \(p_1< p_2< ...< p_n\)
\(s_1;s_2;s_3;...;s_n\)nguyên dương
Khi đó 3 ước lớn nhất của N lần lượt là: \(N_1=p_1^{s_1-1}.p_2^{s_2}.p_3^{s_3}...p_n^{s_n}=\frac{p_1^{s_1}.p_2^{s_2}.p_3^{s_3}...p_n^{s_n}}{p_1}=\frac{N}{p_1}\)
\(N_2=p_1^{s_1}.p_2^{s_2-2}.p_3^{s_3}...p_n^{s_n}=\frac{p_1^{s_1}.p_2^{s_2}.p_3^{s_3}...p_n^{s_n}}{p_2}=\frac{N}{p_2}\)
\(N_3=p_1^{s_1}.p_2^{s_2}.p_3^{s_3-1}...p_n^{s_n}=\frac{p_1^{s_1}.p_2^{s_2}.p_3^{s_3}...p_n^{s_n}}{p_3}=\frac{N}{p_3}\)
Theo bài ra: \(N< N_1+N_2+N_3\)
=> \(N< \frac{N}{p_1}+\frac{N}{p_2}+\frac{N}{p_3}\)
=> \(1< \frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}\).
Vì \(p_1< p_2< ...< p_n\)
=> \(1< \frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}< \frac{1}{p_1}+\frac{1}{p_1}+\frac{1}{p_1}=\frac{3}{p_1}\)
=> \(p_1< 3\)mà \(p_1\)nguyên tố => \(p_1\)= 2
=> \(1< \frac{1}{2}+\frac{1}{p_2}+\frac{1}{p_3}\)
=> \(\frac{1}{2}< \frac{1}{p_2}+\frac{1}{p_3}< \frac{2}{p_2}\)=> \(p_2< 4\)mà \(p_2\)nguyên tố
=> \(p_2=3\)
=> N có hai ước nguyên tố là 2; 3 mà (2; 3) =1; 2.3 = 6
=> N có ước là 6
Hay N chia hết cho 6
Trước năm 2018 thì đây là 1 bài toán không lời giải, và mình là người đầu tiên tìm ra lời giải bài toán này năm 2018
Bài toán gốc lúc đó như sau: Cho số tự nhiên N có tổng 3 ước lớn nhất của N (không kể N) lớn hơn N
Chứng minh rằng N chia hết cho 6
Và đây là lời giải gốc của mình:
Giả sử ước lớn nhất của N là N/3
Khi đó 2 ước còn lại sẽ < N/3
Nên tổng 3 ước sẽ < N, vô lí
Vậy nên, ước lớn nhất của N phải là N/2
Giờ xét ước lớn thứ 2
Giả sử nó là N/4
Thì ước thứ 3 to nhất là N/5
Khi đó, tổng 3 ước lớn nhất có thể là N/2+N/4+N/5=19N/20 < N, vô lí
Vậy nên, ước lớn thứ 2 phải là N/3
N đã chắc chắn có 2 ước là N/2 và N/3, tức là đã chắc chắn chia hết cho 2 và 3
tức là N chắc chắn chia hết cho 6
Vào thời điểm đó, lời giải gốc của mình xét cả ước thứ 3 để tìm ra N phải chia hết cho 12 hoặc 30 rồi mới kết luận
Sau đó, lời giải đã được 1 giáo viên khác đăng lên các trang MXH, và mình đc 1 giáo viên khác đề xuất bỏ trường hợp 3 đi vì không cần thiết. Sau 1 thời gian suy nghĩ, mình chấp nhận đề xuất và lời giải chính thức như kia ra đời
Không biết bạn kia có tham khảo lời giải chính thức kia của mình không vì thấy ý tưởng rất giống, nếu bạn ấy có tham khảo cũng không sao, mình đăng lời giải gốc lên vì nghĩ nó sẽ dễ hiểu hơn với 1 số người, mong được duyệt ạ
Lời giải:
Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.
Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$
$\Rightarrow 2n\vdots 4$
$\Rightarrow n\vdots 2$
$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$
$\Rightarrow n\vdots 8(1)$
Mặt khác:
Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)
Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)
Do đó $n$ chia hết cho $3(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)
Câu 3:
Var i,n:integer:
Begin
Write('n = ');readln(n);
Write('Cac uoc cua n la ');
For i:=1 to n do
If n mod i = 0 then write(i:8);
Readln
End.
Câu 4
Var i,n:integer:
Begin
Write('n = ');readln(n);
Write('Cac so le nho hon n la ');
For i:=1 to n - 1 do
If i mod 2 <> 0 then write(i:8);
Readln
End.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Em xem lại đề. Nếu có số tự nhiên N nhỏ hơn tích 3 ước hay tổng 3 ước???
À tổng ba ước, em quên, cho em xin lỗi