K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

AB = AC

=> Tam giác ABC cân tại A

Xét tam giác MAB vuông tại M và tam giác MAC vuông tại M có:

AB = AC (gt)

B = C (tam giác ABC cân tại A)

=> Tam giác MAB = Tam giác MAC (cạnh huyền - góc nhọn)

=> MB = MC (2 cạnh tương ứng)

=> M là trung điểm của BC.

14 tháng 10 2016

Xét tam giác MAB vuông tại M và tam giác MAC vuông tại M có:

AB = AC (gt)

AM là cạnh chung

=> Tam giác MAB = Tam giác MAC (cạnh huyền - cạnh góc vuông)

=> MB = MC (2 cạnh tương ứng)

=> M là trung điểm của BC.

3 tháng 12 2019

Đề có sai ko bạn ? D là trung điểm của BC . Mà ý a y/c cm ABCD là HCN ( lô gic v :)

3 tháng 12 2019

đề sai

13 tháng 11 2018

a, xét tam giác ABC có : 

AB = AC 

=> tam giác ABC cân 

=> góc B = góc C ( hai góc đáy bằng nhau ) 

b, Xét tam giác ACM và tam giác ABM có :

AC = AB ( gt ) 

góc B = góc C ( phần a ) 

AM chung 

=> tam giác ACM = tam giác ABM ( c. g . c ) 

=> CM = BM ( 2 cạnh tương ứng ) 

=> M là trung điểm của BC 

18 tháng 7 2016

Khó đây

Mình không biết dùng cái này nên vẽ hơi xấu . Mong bạn thông cảm

A B C M N Q P

Hình bạn tự vẽ nha !

                                         Bài làm :

a) Xét \(\Delta AMB\)và \(\Delta AMC\)có :

              AB = AC (gt)

             \(\widehat{BAM}=\widehat{CAM}\)(Vì AM là tia phân giác của \(\widehat{BAC}\))

            AM cạnh chung

=> \(\Delta AMB=\Delta AMC\left(c.g.c\right)\)

=> BM = CM (2 cạnh tương ứng)

=> M là trung điểm BC

b) Xét \(\Delta BMN\)và \(\Delta CMA\)có :

            AM = NM ( Vì M là trung điểm AN)

           \(\widehat{BMN}=\widehat{CMA}\)( đối đỉnh )

          BM = CM (cmt)

=> \(\Delta BMN=\Delta CMA\left(c.g.c\right)\)

\(\widehat{BNM}=\widehat{CAM}\)( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên BN // AC

c) Xét \(\Delta AMQ\)vuông tại Q và \(\Delta AMP\)vuông tại P có :

                 \(\widehat{BAM}=\widehat{CAM}\)(gt)

                AM cạnh chung 

=> \(\Delta AMQ=\Delta AMP\left(ch-gn\right)\)

=> MQ = MP ( 2 cạnh tương ứng )