Cho tam giác ABC, M là trung điểm của BC.
CMR: Nếu AM>1/2BC thì góc A >90 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB = AC
=> Tam giác ABC cân tại A
Xét tam giác MAB vuông tại M và tam giác MAC vuông tại M có:
AB = AC (gt)
B = C (tam giác ABC cân tại A)
=> Tam giác MAB = Tam giác MAC (cạnh huyền - góc nhọn)
=> MB = MC (2 cạnh tương ứng)
=> M là trung điểm của BC.
Đề có sai ko bạn ? D là trung điểm của BC . Mà ý a y/c cm ABCD là HCN ( lô gic v :)
a, xét tam giác ABC có :
AB = AC
=> tam giác ABC cân
=> góc B = góc C ( hai góc đáy bằng nhau )
b, Xét tam giác ACM và tam giác ABM có :
AC = AB ( gt )
góc B = góc C ( phần a )
AM chung
=> tam giác ACM = tam giác ABM ( c. g . c )
=> CM = BM ( 2 cạnh tương ứng )
=> M là trung điểm của BC
Hình bạn tự vẽ nha !
Bài làm :
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có :
AB = AC (gt)
\(\widehat{BAM}=\widehat{CAM}\)(Vì AM là tia phân giác của \(\widehat{BAC}\))
AM cạnh chung
=> \(\Delta AMB=\Delta AMC\left(c.g.c\right)\)
=> BM = CM (2 cạnh tương ứng)
=> M là trung điểm BC
b) Xét \(\Delta BMN\)và \(\Delta CMA\)có :
AM = NM ( Vì M là trung điểm AN)
\(\widehat{BMN}=\widehat{CMA}\)( đối đỉnh )
BM = CM (cmt)
=> \(\Delta BMN=\Delta CMA\left(c.g.c\right)\)
\(\widehat{BNM}=\widehat{CAM}\)( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên BN // AC
c) Xét \(\Delta AMQ\)vuông tại Q và \(\Delta AMP\)vuông tại P có :
\(\widehat{BAM}=\widehat{CAM}\)(gt)
AM cạnh chung
=> \(\Delta AMQ=\Delta AMP\left(ch-gn\right)\)
=> MQ = MP ( 2 cạnh tương ứng )