K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

bạn vẽ hình đi mình làm cho

11 tháng 6 2021

17 tháng 2 2020

A B C D E K G a

Lần lượt áp dụng định lý Talet trong các \(\Delta BCD,\Delta ABC,\Delta BEC\) ta có :

+) \(\Delta BCD:\hept{\begin{cases}KA//BC\\K\in DC,A\in BD\end{cases}}\)  \(\Rightarrow\frac{AK}{BC}=\frac{AD}{BD}\) (1)

+) \(\Delta ABC:\hept{\begin{cases}DE//BC\\D\in AB,E\in AC\end{cases}}\)  \(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\) (2)

+) \(\Delta BEC:\hept{\begin{cases}AG//BC\\A\in EC,G\in BE\end{cases}}\) \(\Rightarrow\frac{AG}{BC}=\frac{AE}{EC}\) (3)

Từ (1), (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}\) \(\Rightarrow AK=AG\) mà\(A\in KG\left(A\in a\right)\)

\(\Rightarrow A\) là trung điểm của \(KG\) (đpcm)

17 tháng 2 2020

A B C D E K G

Ta có: 

+) AG // BC => \(\frac{AG}{BC}=\frac{AE}{AC}\)

+) AK//BC => \(\frac{AK}{BC}=\frac{AD}{BD}\)

+) DE//AC => \(\frac{AD}{DB}=\frac{AE}{EC}\)

Từ 3 điều trên => \(\frac{AG}{BC}=\frac{AK}{BC}\)=> AG = AK 

Mặt khác A, K, G thẳng hàng

=> A là trung điểm KG

10 tháng 3 2017

a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^

b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE

△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450

△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.

Chứng minh tương tự có △AMB vuông cân tại M.

c, Gọi F là giao điểm của BE và AK.

△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK

Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)

△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900

⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)

Từ (1) và (2) ⇒HK=CK

18 tháng 10 2015

cái này sai đề ak b, H ở đâu thế