K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

Ta có: ΔEAH vuông tại E

mà EI là đường trung tuyến

nên IE=IH

=>ΔIEH cân tại I

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{BHD}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{EBC}\right)\)

 nên \(\widehat{IEH}=\widehat{BCE}\)

Ta có: ΔEBC vuông tại E

mà EO là đường trung tuyến

nên OE=OB

=>ΔOEB cân tại O

=>\(\widehat{OEB}=\widehat{OBE}\)

Ta có: \(\widehat{IEO}=\widehat{IEH}+\widehat{OEH}\)

\(=\widehat{EBC}+\widehat{ECB}=90^0\)

=>ΔIEO vuông tại E

Ta có: ΔAFH vuông tại F

mà FI là đường trung tuyến

nên FI=IH

=>FI=IE

=>I nằm trên đường trung trực của FE(1)

Ta có: ΔBFC vuông tại F

mà FO là đường trung tuyến

nên \(FO=\dfrac{BC}{2}\)

mà EO=BC/2

nên FO=EO

=>O nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra IO là đường trung trực của EF

=>IO\(\perp\)EF tại K và K là trung điểm của FE

Xét ΔIEO vuông tại E có EK là đường cao

nên \(IK\cdot IO=IE^2\)

=>\(IK\cdot IO=\left(\dfrac{1}{2}AH\right)^2=\dfrac{1}{4}AH^2\)

=>\(AH^2=4\cdot IK\cdot IO\)

29 tháng 2 2020

bạn gửi lại link vào chỗ tin nhắn của mk đc ko. THANKS!!!

24 tháng 8 2020

Có AD \(\perp\)BC nên ta có \(\widehat{ACD}=90-\widehat{DAC}\)

cmtt có \(\widehat{AHE}=90-\widehat{DAC}\)

\(\Rightarrow\widehat{ACD}=\widehat{AHE}\)

mà \(\widehat{AFE}=\widehat{AHE}\)

\(\Rightarrow\widehat{AFE}=\widehat{ACD}\)

Xét \(\Delta\) AFE và \(\Delta\) ABC có 

\(\widehat{AFE}=\widehat{ACD}\left(cmt\right)\)

\(\widehat{BAC}chung\)

\(\Rightarrow\Delta AFE\infty\Delta ABC\left(g-g\right)\)

#cỪu

24 tháng 3 2020

A B C D E F H K N M P 1 2 1 1

a) 

Ta có: \(\widehat{NKE}=\widehat{KHE}+\widehat{E_1}\)(góc ngoài \(\Delta\)KHE)

\(\Delta\)AHE vuông tại E có: N là trung điểm AH => \(NE=NH=\frac{1}{2}AH\)

Tam giác NEH cân tại N => \(\widehat{NEH}=\widehat{NHE}=\widehat{KHE}\)

Mà \(\widehat{NKB}=\widehat{KHE}+\widehat{E_1}\)

\(\widehat{NED}=\widehat{NEH}+\widehat{E_2}\)

\(\Rightarrow\widehat{NEK}=\widehat{NED}\)

\(\Rightarrow\Delta\)NEK đồng dạng \(\Delta NED\)

=> \(\frac{NE}{ND}=\frac{KE}{ED}\)

Do E là phân giác \(\widehat{DEF}\)=> \(\frac{HK}{HD}=\frac{NH}{ND}\)(đpcm)

b) Định lý Ceva PD,MH,KB đồng quy khi \(\frac{MB}{BD}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=1\)

By: Đỗ Quang Thiều (refundzed)

25 tháng 3 2020

Câu b) chi tiết hơn và sử dụng kiến thức lớp 9

Từ cái tỉ số ở câu đầu

Ta CM đc: \(MK//BH\)

\(\Leftrightarrow\widehat{FPK}=\widehat{MPB}=\widehat{ABE}=\widehat{ACF}=\widehat{FDH}\)

Nên PFKD là tứ giác nội tiếp

Suy ra: \(\widehat{PDK}=\widehat{AFE}=\widehat{AHE}=\widehat{BHD}=\widehat{PKD}\)

Cho nên tam giác PKD cân tại P

=> PK=PD

Từ đây hiển nhiên PM=PK hay \(\frac{PK}{PM}=1\)

Xét tích: \(\frac{MB}{BD}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=\frac{HK}{DH}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=1\)

Theo Ceva đảo thì đồng quy

1: góc ABP=1/2*sđ cung AP=90 độ

=>BP//CH

góc ACP=1/2*sđ cung AP=90 độ

=>CP//BH

mà BP//CH

nên BHCP là hình bình hành

=>BC cắt HP tại trung điểm của mỗi đường

=>M là trung điểm của HP

a: góc BEC=góc BFC=90 độ

=>BCEF nội tiếp

b: Xét ΔAFE và ΔACB có

góc AFE=góc ACB

góc A chung

=>ΔAFE đồng dạng với ΔACB

=>\(\dfrac{EF}{BC}=\dfrac{AE}{AB}=cos60=\dfrac{1}{2}\)

=>EF=10cm