Tìm GTLN của biểu thức: \(D=\frac{6}{x^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D max thì \(\frac{6}{X^2+2}\)max
mà \(\frac{6}{X^2+2}\) thì X2+2 min (1)
Ta có X2 \(\ge0\)\(\forall X\)
=>X2+2\(\ge2\forall X\)(2)
Từ (1),(2)=> X2+2=2 <=> X =0
Thay X=0 ta có D = 3
Vậy D max =3 <=> X=0
Ta có: x2 + 2 \(\ge\)2 \(\forall\) x=> \(\frac{6}{x^2+2}\le\frac{6}{2}=3\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy MaxD = 3 khi x = 0
Ta có \(X-2\sqrt{X}+3\)
\(=\sqrt{X}^2+2\times\sqrt{X}\times1+1^2+2\)
\(=\left(\sqrt{X}+1\right)^2+2\)
Ta lại có \(\left(\sqrt{X}+1\right)^2\ge0,\forall X\)
\(\Rightarrow P\le3.\)Dấu"=" xảy ra khi \(\sqrt{X}+1=0\)\(\Leftrightarrow X=1\)
Vậy MaxP=3<=>X=1
Ta có X-2\sqrt{X}+3X−2X+3
=\sqrt{X}^2+2\times\sqrt{X}\times1+1^2+2=X2+2×X×1+12+2
=\left(\sqrt{X}+1\right)^2+2=(X+1)2+2
Ta lại có \left(\sqrt{X}+1\right)^2\ge0,\forall X(X+1)2≥0,∀X
\Rightarrow P\le3.⇒P≤3.Dấu"=" xảy ra khi \sqrt{X}+1=0X+1=0\Leftrightarrow X=1⇔X=1
Vậy Max P=3<=>X=1
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
\(D=\frac{x^2+2}{x^2+1}=\frac{x^2+1+1}{x^2+1}=\frac{x^2+1}{x^2+1}+\frac{1}{x^2+1}=1+\frac{1}{x^2+1}\)
D đạt giá trị lớn nhất
<=> \(\frac{1}{x^2+1}\) đạt giá trị lớn nhất
<=> x2 + 1 đạt giá trị nhỏ nhất
x2 lớn hơn hoặc bằng 0
x2 + 1 lớn hơn hoặc bằng 1
\(\frac{1}{x^2+1}\le1\)
\(1+\frac{1}{x^2+1}\le2\)
Vậy Max D = 2 khi x = 0
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)
=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]
=> D = (x2 + 5x - 6) . (x2 + 5x + 6)
=> D = (x2 + 5x)2 - 36
=> D = [x(x + 5)]2 - 36
Mà : [x(x + 5)]2 \(\ge0\forall x\)
Suy ra : D = [x(x + 5)]2 - 36 \(\ge-36\forall x\)
Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
Ta có \(x^2+2\ge2\forall x\)
Do đó \(D=\frac{6}{x^2+2}\le\frac{6}{2}=3\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(maxD=3\Leftrightarrow x=0\)
Có \(\frac{1}{D}=\frac{x^2+2}{6}=\frac{x^2}{6}+\frac{1}{3}\ge\frac{1}{3}\Rightarrow D\le3\)
Mậy MAX D là 3 với x=0