Cho a,b CMR:\(4a^2+9b^2+25c^2\ge6ab+10ac+15bc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy cho 2 số không âm:
\(4a^2+9b^2\ge2\sqrt{4a^2.9b^2}=2.6ab=12ab\)
\(9b^2+25c^2\ge2\sqrt{9b^2.25c^2}=2.15bc=30bc\)
\(4a^2+25c^2\ge2\sqrt{4a^2.25c^2}=2.10ac=20ac\)
Cộng từng vế của các BĐT trên:
\(2\left(4a^2+9b^2+25c^2\right)\ge2\left(6ab+10ac+15bc\right)\)
\(\Rightarrow4a^2+9b^2+25c^2\ge6ab+10ac+15bc\)
(Dấu "="\(\Leftrightarrow a=b=c=0\))
\(\text{BĐT}\Leftrightarrow\frac{\left(4a-3b-5c\right)^2+3\left(3b-5c\right)^2}{4}\ge0\) (đúng)
Đẳng thức xảy ra khi \(\hept{\begin{cases}4a=3b+5c\\3b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}4a=6b\\4a=10c\end{cases}}\Leftrightarrow a=\frac{3}{2}b=\frac{5}{2}c\)
Không chắc chỗ dấu bằng cho lắm:)
\(\dfrac{a}{\sqrt{a^2+15bc}}+\dfrac{b}{\sqrt{b^2+15ca}}+\dfrac{c}{\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)
Áp dụng BĐT Caushy-Schwarz ta được:
\(\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}}\)
Ta chứng minh rằng:
\(a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}\le\dfrac{4}{3}\left(a+b+c\right)^2\)
\(\Leftrightarrow\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\dfrac{4}{3}\left(a+b+c\right)^2\)
Áp dụng BĐT Bunhiacopxki ta được:
\(\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+45abc\right)}\)Ta tiếp tục chứng minh:
\(\dfrac{16}{9}\left(a+b+c\right)^3\ge a^3+b^3+c^3+45abc\)
\(\Leftrightarrow\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge a^3+b^3+c^3+45abc\)
Áp dụng BĐT AM-GM (Caushy) ta được:
\(\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge\dfrac{16}{9}\left(a^3+b^3+c^3+3.2\sqrt{ab}.2.\sqrt{bc}.2.\sqrt{ca}\right)=\dfrac{16}{9}.\left(a^3+b^3+c^3+24abc\right)\)
Ta chứng minh:
\(\dfrac{16}{9}\left(a^3+b^3+c^3+24abc\right)\ge a^3+b^3+c^3+45abc\)
\(\Leftrightarrow\dfrac{16}{9}a^3+\dfrac{16}{9}b^3+\dfrac{16}{9}c^3+\dfrac{16}{9}.24abc\ge a^3+b^3+c^3+45abc\)
\(\Leftrightarrow\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{3}abc\) (*)
Áp dụng BĐT AM-GM (Caushy) ta được:
\(\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{9}.3\sqrt[3]{a^3b^3c^3}=\dfrac{7}{3}abc\)
\(\Rightarrow\) (*) đúng.
Vậy BĐT đã được chứng minh. Dấu "=" xảy ra khi \(a=b=c>0\).
Bđt cần CM tương đương với:
\(\left(\sqrt{a^2+15bc}+\sqrt{b^2+15ca}+\sqrt{c^2+15ab}\right)^2\le3\left[a^2+b^2+c^2+15\left(ab+bc+ca\right)\right]\)
Ta cần cm \(3\left[a^2+b^2+c^2+15\left(ab+bc+ca\right)\right]\le16\left(a+b+c\right)^2\)
Rút gọn ta đc \(ab+bc+ca\le a^2+b^2+c^2\)
Bđt sau cùng đúng
Ta đc đpcm
Không biết ông tth SOS như thế nào nhưng mik thì đơn giản thôi ( không có ý định cà khịa nhé người anh em )
Đặt \(x=2a;y=3b;z=5c\)
Khi đó:BĐT cần chứng minh tương đương với:
\(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( đúng )
=> ĐPCM
mình đăng câu hỏi này zì đã đọc cuộc cãi lộn giữa các ctv thôi
haha