K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

.các bác giúp em với ạ,em cảm ơn trc ạ

22 tháng 3 2020

bài 1 :

1, 

a, x^2 - xy = x(x - y)

b, x^2 + 2xy + y^2 - 4

= (x + y)^2 - 2^2

= (x + y + 2)(x + y - 2)

2,

(2x-1)(2x+1)+4x(1-x)

= 4x^2 - 1 + 4x - 4x^2

= 4x - 1

3,  x^2 - 6x + 5 = 0

<=> x^2 - x - 5x + 5 = 0

<=> x(x - 1) - 5(x - 1) = 0

<=> (x - 5)(x - 1) = 0

<=> x = 5 hoặc x = 1

30 tháng 12 2017

Bài 1:

\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)

\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)

Bài 2:

\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)

Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9

Bài 4:

 \(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)  

\(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2

28 tháng 10 2019

a>(8x^2y+10xy6^2-6xy):2xy=4xy+5y-3

b>(3x^2-4x).(2x-6)=6x^3-26x^2+24x

6 tháng 1 2021

B1: a)\(xy\left(3x-2y\right)-2xy^2=3x^2y-2y^2x-2xy^2=3x^2y-4xy^2\)

b) \(\left(x^2+4x+4\right):\left(x+2\right)=\left(x+2\right)^2:\left(x+2\right)=\left(x+2\right)\)

\(\dfrac{2\left(x-1\right)}{x^2}.\dfrac{x}{\left(x-1\right)}=\dfrac{2\left(x-1\right)x}{x^2\left(x-1\right)}=\dfrac{2}{x}\)

B2:

a)\(2x^2-4x+2=2\left(x^2-2x+1\right)=2\left(x-1\right)^2\)

b)\(x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

Mấy bài này là mấy bài rất rất rất cơ bản, học sinh TB cũng phải tự làm được, mấy bài kiểu này đừng nên đăng lên hỏi nha:vv

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

a: \(=9-4\sqrt{5}\cdot\dfrac{1}{\sqrt{5}}=9-4=5\)

b:  \(=\sqrt{5}-2-\dfrac{1}{2}\cdot2\sqrt{5}=-2\)

2 tháng 11 2021

Bài 5:

\(x^3=18+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=18\\ y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=6\\ P=x^3+y^3-3\left(x+y\right)+1993\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1993\\ P=18+6+1993=2017\)

2 tháng 11 2021

x3=18+33√(9+4√5)(9−4√5)(3√9+4√5+3√9−4√5)⇔x3=18+3x3√1⇔x3−3x=18y3=6+33√(3−2√2)(3+2√2)(3√3+2√2+3√3−2√2)⇔y3=6+3y3√1⇔y3−3y=6P=x3+y3−3(x+y)+1993P=(x3−3x)+(y3−3y)+1993P=18+6+1993=2017