Cho tam giác ABC có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC ( H thuộc BC )
a) Chứng minh: HB = HC và góc BAH = góc CAH
c) Kẻ HD vuông góc với AB tại D, HE vuông góc với AC tại E. Chứng minh tam giác HDE cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a) Xét hai tam giác vuông $AHB$ và $AHC$ có:
$AH$ là cạnh chung;
$AB = AC$ (gt);
Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)
Suy ra $HB = HC$ (Hai cạnh tương ứng)
$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).
b) Xét hai tam giác vuông $ADH$ và $AEH$ có:
$AH$ là cạnh chung;
$\widehat{BAH} = \widehat{CAH}$ (cmt);
Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).
Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB=AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB=HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)
b/ Ta có :HB=HC( cmt)
=> H trung điểm BC
Ta có: HB=HC=BC/2=8/2=4 (cm)
Xét tam giác ABH vuông tại H
Có AB^2= AH^2+HB^2 (pytago)
=>AH^2= AB^2-HB^2
AH^2= 5^2-4^2
AH^2=25-16
AH^2=9
AH= căng 9
=> AH= 3cm
Vậy AH=3cm
c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)
Có: AH chung
Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)
=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)
=> AD=AE ( 2 cạnh tương ứng)
=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)
Xét tam giác ABC cân tại A(gt)
Có: Góc B= (180 độ - góc A)/2 (định lí)
Xét tam giác ADE cân tại A (cmt)
Có: Góc D= (180 độ - góc A)/2 (định lí)
=> Góc B= Góc D ( =(180 độ - góc A)/2)
=> DE//BC ( 2 góc đồng vị bằng nhau)
a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:
AH: chung
AB=AC (gt)
=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)
=>HB=HC (2 cạnh tương ứng)
b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)
Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)
52 = AH2 + 42
AH2 = 52 - 42 = 25-16=9
AH=\(\sqrt{9}=3\)
c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)
Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:
AH: chung
góc BAH=góc CAH (cmt)
=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)
=>HD=HE (2 cạnh tương ứng)
=>tam giác DHE cân tại H
d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE
Mà HE=HD (cmt) => HC>HD
a) Chứng minh được tam giác ABH= tam giác ACH (ch-cgv)
Suy ra: HB=HC (2 góc tương ứng). Vậy H là trung điểm BC.
Suy ra HB=HC=BC:2=8:2=4
và góc BAH=góc CAH.
b) Ta có: tam giác ABH vuông tại H(AH vuông góc BC)
Suy ra AH^2 + BH^2 =AB^2
Suy ra AH^2+4^2= 5^2
Suy ra AH^2= 9
Mà AH>0
Suy ra AH=3
c) Xét tam giác ADH và tam giác AEH có:
+ Góc ADH = Góc AEH = 90o (HD vuông góc AB, HE vuông góc AC)
+ AH là cạnh chung
+ Góc DAH= Góc EAH(do tam giác ABH= tam giác ACH)
=> tam giác ADH = tam giác AEH (ch-gh)
Suy ra HD=HE (2 góc tương ứng)
Suy ra tam giác HDE cân tại H.
Xét ΔAHBvà ΔAHCΔAHBvàΔAHCcó:
AHBˆ=AHC=ˆAHB^=AHC=^90 độ ( gt )
AH là cạnh chung
AB=AC=5cm ( gt )
Do đó: ΔABH=ΔACHΔABH=ΔACH( cạnh huyền-cạnh góc vuông)
⇒HB=HC⇒HB=HC( 2 cạnh tương ứng )
b) Ta có: HB = HC = 12.BC=12.8=82=412.BC=12.8=82=4 cm
Áp dụng định lí Py-ta-go vào ΔAHBΔAHB vuông tại H, ta có:
BA2=BH2+AH2BA2=BH2+AH2
hay: 52=42+AH2⇒AH2=52−42=52=42+AH2⇒AH2=52−42= 25 - 16 = 9 = 3232
Vậy AH = 3 cm.
c) Xét ΔHDBvà ΔHECΔHDBvàΔHEC, ta có:
HDBˆ=HECˆHDB^=HEC^ = 90 độ ( gt )
BH = CH ( câu a )
Do đó: ΔHDB=ΔHECΔHDB=ΔHEC( cạnh huyền - góc nhọn )
⇒DH=HE⇒DH=HE ( 2 cạnh tương ứng ) (1)
Từ (1) => ΔHDEΔHDE cân tại H.
Chúc bạn học tốt ( tớ có 2 cách làm nhưng bạn kẻ hình nhé )