K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

Cách 3 :

\(a+b+c\ge2+abc\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge6+3abc\)

Từ điều kiện ta có thể suy ra : \(a+b+c\ge3\)

Từ đó ta có : \(6\le\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Đến đây ta cần chứng minh :     \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)+3abc\)

                                            \(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(Đây là hệ quả của Cô-si)

22 tháng 3 2020

Ta có: \(a^2+b^2+c^2\ge ab+bc+ac\ge3\sqrt[3]{a^2b^2+b^2c^2+c^2a^2}\)

=> \(\hept{\begin{cases}a^2+b^2+c^2\ge3\\1\ge abc\end{cases}}\)

Có:  \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3+6=9\)

=> \(a+b+c\ge3=2+1\ge2+abc\)

NV
28 tháng 4 2021

Do \(abc=1\), nếu viết BĐT về dạng: 

\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Có lẽ bạn sẽ nhận ra ngay. Một bài toán vô cùng quen thuộc.

Chắc với bài toán này thì bạn ko cần lời giải nữa, nó có ở khắp mọi nơi.

28 tháng 4 2021

cảm ơn a

6 tháng 6 2020

Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?

6 tháng 1 2018

sửa giả thiết là \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)

Và Áp dụng BĐT cô-si, ta có \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\ge3\left(abc\right)^2\)

dấu = xảy ra <=>a=b=c>0

Thay vào thì \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\) (ĐPCM)

^_^

27 tháng 9 2020

Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)

Áp dụng BĐT AM-GM ta có:

\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)

Suy ra BĐT đã cho là đúng nếu ta chứng minh được

\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)

Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)

Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c

27 tháng 9 2020

Bài 3:

Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)

Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)

Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:

\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)

Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)

\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề

Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị

4 tháng 1 2020

hack hay sao

4 tháng 1 2020

chứng minh ngắn là làm tắt

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không?...
Đọc tiếp

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).

Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)

Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không? (đừng bảo mình là áp dụng bđt AM-GM cho 3 số nhé! Vì ta đang chứng minh nó mà:)) 

Cập nhật: Đây là 1 cách mình vừa tìm ra:(dù ko chắc nhưng vẫn đăng để mọi người tìm lỗi cho mình:v)

Không mất tính tổng quát giả sử \(c=min\left\{a,b,c\right\}\).Ta có:

\(VT-VP=\frac{1}{3}\left(a+2b+3c\right)\left(a-b\right)^2+\frac{1}{3}\left(b+2c\right)\left(b-c\right)^2+\frac{1}{3}\left(c+2a\right)\left(c-a\right)^2+b\left(a-c\right)\left(b-c\right)\ge0\)

---------------------------------------------Bài viết vẫn còn tiếp tục cập nhật-------------------------------------------

 

0
26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn 

4 tháng 4 2020

3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v

Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities

Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.

Bài 3: Tí check đề cái đã.

4 tháng 4 2020

Bài 3: Biết lắm mà: Check: \(a=b=1;c=\frac{1}{2}\) thì \(VT-VP=-\frac{1}{8}< 0\)

P/s: Nếu bạn sửa đề, hãy đăng vào bên dưới câu hỏi bạn nhé! Để người đọc còn hiểu mình đang trả lời cái nào:D

@Cool Kid:\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)Hay một BĐT mạnh (và đẹp:v) hơn là: \(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)Ta cần chứng...
Đọc tiếp

@Cool Kid:

\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)

Hay một BĐT mạnh (và đẹp:v) hơn là: 

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)

Ta cần chứng minh: \(VT-VP=\Sigma\frac{\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Giả sử \(a\ge c\ge b\) và đặt \(a=b+u+v,c=b+v\)

Bất đẳng thức này đúng theo Cauchy-Schwawrz:

\(VT-VP\ge\frac{4\left(c+a-b\right)^2\left(c-a\right)^2}{4\left(a+b+c\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Last inequality is: https://imgur.com/tRsHOfr (mình không gửi ảnh được nên gửi link vậy!)

Done!

0