Một vật chuyển động trên 4 cạnh của hình vuông. Trên hai cạnh đầu, vật chuyển độ với vận tốc 6m/giây, trên cạnh thứ ba với vận tốc 4m/ giây và trên cạnh thứ tư với vận tốc 2m/ giây. Hỏi độ dài của cạnh hình vuông biết rằng tổng số thời gian chuyển động trên 4 cạnh là 130 giây
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tk : gọi thời gian vận chuyện động trên cạnh thứ nhất , thứ hai , thứ ba , thứ tư lần lượt là : a,b,c,d, ( giây )
=> a+b+c+d = 59
quãng đường vật đi đc là : 5a,5b, 4c,3d đều bằng cạnh hình vuông
Gọi thời gian vật chuyển động trên cạnh thứ nhất; thứ hai ; thứ ba; thứ tư lần lượt là: a; b; c; d (giây)
=> a+ b + c+ d = 59
Quãng đường vật đi được là: 5a; 5b; 4c; 3d, đều bằng cạnh hình vuông
=> 5a = 5b = 4c = 3d => \(\frac{5a}{60}=\frac{5b}{60}=\frac{4c}{60}=\frac{3d}{60}\) => \(\frac{a}{12}=\frac{b}{12}=\frac{c}{15}=\frac{d}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a}{12}=\frac{b}{12}=\frac{c}{15}=\frac{d}{20}\)= \(\frac{a+b+c+d}{12+12+15+20}\)=1
=> a = 12.1 = 12 (giây)
Vậy cạnh hình vuông bằng (quãng đường vật đi trên cạnh đầu) : 12 x 5 = 60 m
ĐS: 60 m
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
=>
Do đó: x = 60. = 12
y = 60. = 15
z = 60. = 20
Vậy cạnh hình vuông là
5.12 = 60m
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
Hay
Do đó: x = 60. = 12
y = 60. = 15
z = 60. = 20
Vậy cạnh hình vuông là 5.12 = 60m
bn t 2k8 ơi,cái này lâu rồi nên người ta ko k đâu
Gọi thời gian vật chuyển động trên cạnh thứ nhất ; thứ hai ; thứ ba ; thứ tư lần lượt là : \(a,b,c,d\)( giây ) \(\left(a,b,c,d>0\right)\)
Vì cùng một đoạn đường nên vận tốc và thời gian là hai đại lượng tỉ lệ nghịch với nhau nên ta có :
\(5a=5b=3c=3d\)
\(\Rightarrow\frac{5a}{60}=\frac{5b}{60}=\frac{4c}{60}=\frac{3d}{60}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{12}=\frac{c}{15}=\frac{d}{20}\)và \(a+b+c+d=59\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{12}=\frac{b}{12}=\frac{c}{15}=\frac{d}{20}=\frac{a+b+c+d}{12+12+15+20}=\frac{59}{59}=1\)
\(\Rightarrow\frac{a}{12}=1\)
\(\Rightarrow a=12\)( giây )
Vậy dộ dài cạnh hình vuông là : ( quãng đường vật đi trên cạnh đầu )
\(12.5=60\left(m\right)\)
Vậy độ dài cạnh hình vuông là : \(60m\)
Gọi thời gian vật chuyển động trên cạnh thứ nhất; thứ hai ; thứ ba; thứ tư lần lượt là: a; b; c; d (giây)
=> a+ b + c+ d = 59
Quãng đường vật đi được là: 5a; 5b; 4c; 3d, đều bằng cạnh hình vuông
=> 5a = 5b = 4c = 3d => =>
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
=> a = 12.1 = 12 (giây)
Gọi thời gian vật chuyển động trên cạnh thứ nhất; thứ hai ; thứ ba; thứ tư lần lượt là: a; b; c; d (giây)
=> a+ b + c+ d = 59
Quãng đường vật đi được là: 5a; 5b; 4c; 3d, đều bằng cạnh hình vuông
=> 5a = 5b = 4c = 3d => \(\frac{5a}{60}=\frac{5b}{60}=\frac{4c}{60}=\frac{3d}{60}\) => \(\frac{a}{12}=\frac{b}{12}=\frac{c}{15}=\frac{d}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a}{12}=\frac{b}{12}=\frac{c}{15}=\frac{d}{20}=\frac{a+b+c+d}{12+12+15+20}=\frac{59}{59}=1\)
=> a = 12.1 = 12 (giây)
Vậy cạnh hình vuông bằng (quãng đường vật đi trên cạnh đầu) : 12 x 5 = 60 m
ĐS: 60 m