a, 4.(x-3)=72-13
b, 5x+x=150:2+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)|2x-15|=13`
`**2x-15=13`
`<=>2x=28`
`<=>x=14.`
`**2x-15=-13`
`<=>2x=-2`
`<=>x=-1.`
`b)|7x+3|=66`
`**7x+3=66`
`<=>7x=63`
`<=>x9`
`**7x+3=-66`
`<=>7x=-69`
`<=>x=-69/7`
`c)|5x-2|=0`
`<=>5x-2=0`
`<=>5x=2`
`<=>x=2/5`
\(a,\Leftrightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
Vậy ...
\(b,\Leftrightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-\dfrac{69}{7}\end{matrix}\right.\)
Vậy ...
\(c,\Leftrightarrow5x-2=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy ...
\(a,\Rightarrow\left(35x+3\right)\cdot19=152\\ \Rightarrow35x+3=8\\ \Rightarrow x=\dfrac{1}{7}\\ b,\Rightarrow3\left(x+7\right)=42\\ \Rightarrow x+7=14\Rightarrow x=7\\ c,\Rightarrow3\left(x+1\right)=48\\ \Rightarrow x+1=16\Rightarrow x=15\\ d,\Rightarrow120-5x+100\cdot2:5=4\cdot15\\ \Rightarrow120-5x+40=60\\ \Rightarrow5x=100\Rightarrow x=20\\ e,\Rightarrow4x-10=30\\ \Rightarrow4x=40\\ \Rightarrow x=10\\ g,\Rightarrow10x+10=70\\ \Rightarrow10x=60\\ \Rightarrow x=6\)
a) Ta có : x=0 không là nghiệm của phương trình. Chia cả hai vế của phương trình cho \(^{x^2}\) ta có:
\(x^2-2x-1-\frac{2}{x}+\frac{1}{x^2}=0\) \(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)-1=0\) (1)
Đặt \(x+\frac{1}{x}=t\) \(\left(t>2\right)\) hoăc \(\left(t<-2\right)\)\(\Rightarrow\)\(t^2=\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2\)\(\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
Vậy phương trình (1) tương đương với \(t^2+2t-3\)\(\Leftrightarrow\left(t+3\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1<2\) (không t/m) hoặc \(t=-3>-2\)(t/m)
Ta có :t=-3\(\Rightarrow x+\frac{1}{x}=-3\Leftrightarrow x^2+1=-3x\Leftrightarrow x^2+3x+\frac{9}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\Leftrightarrow\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow x=\frac{\sqrt{5}-3}{2}\) hoặc \(x=\frac{-\sqrt{5}-3}{2}\)
Vậy phương trình có hai nghiệm x1=\(\frac{\sqrt{5}-3}{2}\) và x2=\(\frac{-\sqrt{5}-3}{2}\)
Chú ý: Phương trình này được gọi là phương trình bậc bốn đối xứng
Có gì sai sót mong bạn thông cảm nha!
Mình mai sẽ giải tiếp 2 phần còn lại....
Nhớ tick cho minh nha bạn.....B-)
\(a,4\left(x-3\right)=7^2-1^3\)
\(4\left(x-3\right)=49-1\)
\(4\left(x-3\right)=48\)
\(\Rightarrow x-3=48:4\)
\(x-3=24\)
\(\Rightarrow x=27\)
\(5x+x=\frac{150}{2}-3\)
\(6x=75-3\)
\(6x=72\)
\(\Rightarrow x=12\)
`a)sqrt{5x-2}=3(x>=2/5)`
`<=>5x-2=9`
`<=>5x=11`
`<=>x=11/5(tm)`
`b)sqrt{x^2-4x+4}-5=0`
`<=>\sqrt{(x-2)^2}=5`
`<=>|x-2|=5`
`<=>` \(\left[ \begin{array}{l}x-2=5\\x-2=-5\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=7\\x=-3\end{array} \right.\)
`c)3sqrt{4x+8}-sqrt{9x+18}+9sqrt{(x+2)/9}=sqrt{72}(x>=-2)`
`<=>6sqrt{x+2}-3sqrt{x+2}+3sqrt{x+2}=sqrt{72}`
`<=>6sqrt{x+2}=6sqrt2`
`<=>sqrt{x+2}=sqrt2`
`<=>x+2=2`
`<=>x=0(tm)`
\(a,ĐK:x\ge\dfrac{2}{5}\)
\(\Leftrightarrow5x-2=9\)
\(\Leftrightarrow5x=11\)
\(\Leftrightarrow x=\dfrac{11}{5}\)
\(b,\)
\(\Leftrightarrow x^2-5x+4=25\)
\(\Leftrightarrow x^2-5x-21=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{109}}{2}\\x=\dfrac{5-\sqrt{109}}{2}\end{matrix}\right.\)
\(c,\)
\(\Leftrightarrow6\sqrt{x+2}-3\sqrt{x+2}+9\cdot\sqrt{\dfrac{x+2}{9}}=6\sqrt{2}\)
\(\Leftrightarrow2\sqrt{x+2}-\sqrt{x+2}+3\cdot\sqrt{\dfrac{x+2}{9}}=2\sqrt{2}\)
Đặt \(\sqrt{x+2}=a\) ta có (1)
\(2a-a+3\cdot\dfrac{a}{\sqrt{9}}=2\sqrt{2}\)
\(\Leftrightarrow a+3\cdot\dfrac{a}{3}=2\sqrt{2}\)
\(\Leftrightarrow2a=2\sqrt{2}\)
\(\Leftrightarrow a=\sqrt{2}\)
Thay \(a=\sqrt{2}\) vào (1) ta có
\(\sqrt{x+2}=\sqrt{2}\)
\(\Leftrightarrow x+2=2\)
\(\Leftrightarrow x=0\)
a, 4.(x-3)=72-13
=> 4(x - 3) = 49 - 1
=> 4(x - 3) = 48
=> x - 3 = 12
=> x = 15
b, 5x+x=150:2+3
=> 6x + = 75 + 3
=> 6x = 78
=> x = 13
a) 4(x-3)=72-13
<=> 4(x-3)=49-1
<=> 4(x-3)=48
<=> x-3=12
<=> x=15
Vậy x=15
b) 5x+x=150:2+3
<=> 6x=75+3
<=> 6x=78
<=> x=13
Vậy x=13