\(x\underrightarrow{lim}-\infty\)\((ax-\sqrt{x^2+bx+2})=3\)thì a+b bằng
cảm ơn mọi người mong mọi người giúp em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\lim\limits_{x\rightarrow+\infty}\frac{x+\frac{8}{x^2}}{1+\frac{2}{x}+\frac{1}{x^2}+\frac{2}{x^3}}=\frac{+\infty}{1}=+\infty\)
\(b=\lim\limits_{x\rightarrow-\infty}\frac{x\left(\frac{1}{x}+3\right)}{\left|x\right|\sqrt{2+\frac{3}{x^2}}}=\lim\limits_{x\rightarrow-\infty}\frac{x\left(\frac{1}{x}+3\right)}{-x\sqrt{2+\frac{3}{x^2}}}=\frac{3}{-\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)
\(c=\lim\limits_{x\rightarrow-\infty}\frac{x^2\sqrt[3]{\frac{1}{x^6}+\frac{1}{x^2}+1}}{x^2\sqrt{\frac{1}{x^2}+\frac{1}{x}+1}}=\frac{1}{1}=1\)
Giới hạn đã cho hữu hạn khi và chỉ khi \(b=1\)
Khi đó:
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{-ax+1}{\sqrt{x^2-ax+1}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-a+\dfrac{1}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{1}{x^2}}+1}=-\dfrac{a}{2}\)
\(\Rightarrow-\dfrac{a}{2}=2\Rightarrow a=-4\)
Vậy \(\left(a;b\right)=\left(-4;1\right)\)
Có: \(f\left(x\right)=ax^2+bx+c=5\) với mọi x
=> \(f\left(2\right)=4a+2b+c=5\)
=> \(4a+2b+c-5=5-5=0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}}+\dfrac{ax}{x}}{\dfrac{bx}{x}-\dfrac{1}{x}}=\dfrac{a-1}{b}=3\)
=> A
a) Đặt \(A=4x-x^2-5\)
\(-A=x^2-4x+5\)
\(-A=\left(x^2-4x+4\right)+1\)
\(-A=\left(x-2\right)^2+1\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\)
\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)
b) Đặt \(B=x^2-2x+5\)
\(B=\left(x^2-2x+1\right)+4\)
\(B=\left(x-1\right)^2+4\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\left(đpcm\right)\)
a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)
b) x2 -2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0 với mọi x (đpcm)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-a\sqrt{1+\dfrac{1}{x^2}}+\dfrac{2017}{x}}{1+\dfrac{2018}{x}}=-a\Rightarrow a=-\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{bx+1}{\sqrt{x^2+bx+1}+x}=\lim\limits_{x\rightarrow+\infty}\dfrac{b+\dfrac{1}{x}}{\sqrt{1+\dfrac{b}{x}+\dfrac{1}{x^2}}+1}=\dfrac{b}{2}=2\Rightarrow b=4\)
\(\Rightarrow P=2\)
ĐKXĐ : \(x\ge2\)
Ta có : \(A=\dfrac{x+3\sqrt{x-2}}{x+4\sqrt{x-2}+1}\) . Đặt t = \(\sqrt{x-2}\ge0\) \(\Rightarrow x=t^2+2\)
Khi đó : \(A=\dfrac{t^2+2+3t}{t^2+4t+3}=\dfrac{\left(t+2\right)\left(t+1\right)}{\left(t+3\right)\left(t+1\right)}=\dfrac{t+2}{t+3}=1-\dfrac{1}{t+3}\ge1-\dfrac{1}{3}=\dfrac{2}{3}\)
" = " \(\Leftrightarrow t=0\Leftrightarrow x=2\)
Vậy ...
Bạn xem đi! Chỗ nào không hiểu bảo mình. Lần sau nhớ đăng trong h.vn nhé
idol thử lại rồi calc máy tính xem đúng không