K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

Bạn xem đi! Chỗ nào không hiểu bảo mình. Lần sau nhớ đăng trong h.vn nhé

19 tháng 3 2020

idol thử lại rồi calc máy tính xem đúng không

NV
29 tháng 2 2020

\(a=\lim\limits_{x\rightarrow+\infty}\frac{x+\frac{8}{x^2}}{1+\frac{2}{x}+\frac{1}{x^2}+\frac{2}{x^3}}=\frac{+\infty}{1}=+\infty\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{x\left(\frac{1}{x}+3\right)}{\left|x\right|\sqrt{2+\frac{3}{x^2}}}=\lim\limits_{x\rightarrow-\infty}\frac{x\left(\frac{1}{x}+3\right)}{-x\sqrt{2+\frac{3}{x^2}}}=\frac{3}{-\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)

\(c=\lim\limits_{x\rightarrow-\infty}\frac{x^2\sqrt[3]{\frac{1}{x^6}+\frac{1}{x^2}+1}}{x^2\sqrt{\frac{1}{x^2}+\frac{1}{x}+1}}=\frac{1}{1}=1\)

NV
22 tháng 3 2022

Giới hạn đã cho hữu hạn khi và chỉ khi \(b=1\)

Khi đó: 

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{-ax+1}{\sqrt{x^2-ax+1}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-a+\dfrac{1}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{1}{x^2}}+1}=-\dfrac{a}{2}\)

\(\Rightarrow-\dfrac{a}{2}=2\Rightarrow a=-4\)

Vậy \(\left(a;b\right)=\left(-4;1\right)\)

7 tháng 2 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}}+\dfrac{ax}{x}}{\dfrac{bx}{x}-\dfrac{1}{x}}=\dfrac{a-1}{b}=3\)

=> A

NV
27 tháng 1 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{-a\sqrt{1+\dfrac{1}{x^2}}+\dfrac{2017}{x}}{1+\dfrac{2018}{x}}=-a\Rightarrow a=-\dfrac{1}{2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{bx+1}{\sqrt{x^2+bx+1}+x}=\lim\limits_{x\rightarrow+\infty}\dfrac{b+\dfrac{1}{x}}{\sqrt{1+\dfrac{b}{x}+\dfrac{1}{x^2}}+1}=\dfrac{b}{2}=2\Rightarrow b=4\)

\(\Rightarrow P=2\)

NV
27 tháng 1 2021

Để giới hạn đã cho là hữu hạn thì \(a=1\)

\(\lim\limits_{x\rightarrow+\infty}\left(x+b-\sqrt{x^2-6x+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+2bx+b^2-\left(x^2-6x+2\right)}{x+b+\sqrt{x^2-6x+2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2b+6\right)x+b^2-2}{x+b+\sqrt{x^2-6x+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{2b+6+\dfrac{b^2-2}{x}}{1+\dfrac{b}{x}+\sqrt{1-\dfrac{6}{x}+\dfrac{2}{x^2}}}=\dfrac{2b+6}{2}=b+3\)

\(\Rightarrow b+3=3\Rightarrow b=0\Rightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)

18 tháng 2 2021

a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}-x}+\lim\limits_{x\rightarrow-\infty}\dfrac{3x^3-1-x^3}{\sqrt[3]{\left(3x^3-1\right)^2}+x\sqrt[3]{3x^3-1}+x^2}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{-\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-\dfrac{x}{x}}+\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{1}{x^2}}{\dfrac{\sqrt[3]{\left(3x^3-1\right)^2}}{x^2}+\dfrac{x\sqrt[3]{3x^3-1}}{x^2}+\dfrac{x^2}{x^2}}=0\)

b/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x-x^2}{\sqrt{x^2+x}+x}+\lim\limits_{x\rightarrow+\infty}\dfrac{x^3-x^3+x^2}{x^2+x\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}}+\dfrac{x}{x}}+\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x^2}{x^2}}{\dfrac{x^2}{x^2}+\dfrac{x\sqrt[3]{x^3-x^2}}{x^2}+\dfrac{\sqrt[3]{\left(x^3-x^2\right)^2}}{x^2}}\)

\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

c/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x-1-2x-1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{4x^2-1}+\sqrt[3]{\left(2x+1\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{2}{x^{\dfrac{2}{3}}}}{\dfrac{\sqrt[3]{\left(2x-1\right)^2}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{4x^2-1}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{\left(2x+1\right)^2}}{x^{\dfrac{2}{3}}}}=0\)

Check lai ho minh nhe :v

2 tháng 3 2021

cảm ơn bạn nhé , giờ mới trả lời được bucminh

 

13 tháng 1 2020

\(\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)=\lim\limits_{x\rightarrow+\infty}x.\lim\limits_{x\rightarrow+\infty}\left(a-\sqrt{b}\right)=\pm\infty\)

Còn tuỳ vào độ lớn của a và b

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Đúng là giá trị giới hạn còn phụ thuộc vào giá trị của $a,b$ mới có thể khẳng định nhưng dòng công thức bạn viết ở trên chưa đúng đâu nhé.

NV
27 tháng 1 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{1+\dfrac{1}{x}}+\sqrt[3]{1+\dfrac{1}{x^3}}}{1}=0\)

Bạn coi lại đề, thế này thì \(\sqrt[a]{b}+c=0\) không thể xác định được a;b;c