K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

đặt x2 + x là a ta sẽ có a2 + 4a -12=0

=a2 + 6a - 2a -12=0

=a(a+6) -2(a+6)=0

(a-2)(a+6)=0

vậy a=2 và a=-6

 

19 tháng 3 2020

(x2 + x)2 + 4(x2 + x) - 12 = 0

<=> x^4 + 2x^3 + x^2 + 4x^2 + 4x - 12 = 0

<=> x^4 + 2x^3 + 5x^2 + 4x - 12 = 0

<=> x^4 - x^3 + 3x^3 - 3x^2 + 8x^2 - 8x + 12x - 12 = 0

<=> x^3(x - 1) + 3x^2(x - 1) + 8x(x - 1) + 12(x - 1) = 0

<=> (x^3 + 3x^2 + 8x + 12)(x - 1) = 0

<=> (x^3 + 2x^2 + x^2 + 2x + 6x + 12)(x - 1) = 0

<=> [x^2(x + 2) + x(x + 2) + 6(x + 2)](x - 1) = 0

<=> (x^2 + x + 6)(x + 2)(x - 1) = 0

x^2 + x + 6 > 0

<=> x + 2 = 0 hoặc x - 1 = 0

<=> x = -2 hoặc x = 1

9 tháng 11 2021

\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)

NV
8 tháng 3 2020

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

NV
8 tháng 3 2020

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

2 tháng 4 2023

\(-x^2+2\left(2+m\right)x-m^2=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2+m\right)\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

Ta có :

\(\left|x_1+x_2-4\right|=2x_1x_2\)

\(\Leftrightarrow\left|4+2m-4\right|=2m^2\)

\(\Leftrightarrow\left|2m\right|=2m^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2m=2m^2\\2m=-2m^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-2m^2=0\\2m+2m^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2m\left(1-m\right)=0\\2m\left(1+m\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\)

10 tháng 12 2021

\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)

\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)

2: \(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)-6=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3 hoặc x=2

5: \(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

hay \(x\in\left\{-2;1;-1\right\}\)

30 tháng 10 2017

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3 π /2

31 tháng 5 2019

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x  - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3π/2.