K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

ta có MNPQ là hình thang=>MN//PQ

mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)

=>tam giác MNO cân tại O=>MO=NO

=>tam giác QOP cân tại O=>OQ=Op

=>MO+OP=NO+OQ=>NQ=MP

=>MNPQ là hình thang cân

\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)

\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)

mà EF//PQ=>EF//MN

=>MNFE là hình thang(3)

từ (1)(3)=>MNFE là hình thang cân

=>EFPQ là hình thang(4)

(2)(4)=>EFPQ là hình thang cân

Ta có: \(\widehat{OMN}=\widehat{OPQ}\)

\(\widehat{ONM}=\widehat{OQP}\)

mà \(\widehat{OMN}=\widehat{ONM}\)

nên \(\widehat{OPQ}=\widehat{OQP}\)

Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)

nên ΔOMN cân tại O

Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)

nên ΔOPQ cân tại O

Ta có: OM+OP=MP

ON+OQ=QN

mà OM=ON

và OP=OQ

nên MP=QN

Hình thang MNPQ có MP=QN

nên MNPQ là hình thang cân

Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)

Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)

nên EMNF là hình thang cân

Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)

nên EQPF là hình thang cân

PQ=7*2=14cm

\(S_{MNPQ}=\dfrac{1}{2}\cdot\left(7+14\right)\cdot4=2\cdot21=42\left(cm^2\right)\)

19 tháng 7 2016

Cho hình thang MNPQ có góc P > 90 độ > góc Q và góc N = 2 lần góc M.

a) Xác định các đáy của hình thang MNPQ.

b) Nếu cho thêm MN = NP = MQ:2 = a. C/m MNPQ là hình thang cân. Gọi O là giao điểm của MP & NQ. Tính góc MOQ.