Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Suy ra: OM=ON
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Suy ra: OQ=OP
Ta có: OM+OP=MP
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Ta có: MP=MO+OP
NQ=NO+OQ
mà MO=NO
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: ΔNMP=ΔMNQ
=> MP=NQ
Mà MNPQ là hthang
=> MNPQ là hthang cân
Ta có: EF//QP
=> FEQP là hthang
Mà \(\widehat{EQP}=\widehat{FPQ}\)(ABCD là hthang cân)
=> FEQP là hthang cân
Ta có: EF//QP
Mà QP//MN(ABCD là hthang cân)
=> EF//MN
=> MNFE là hthang
Mà \(\widehat{EMN}=\widehat{MNF}\)(ABCD là hthang cân)
=> MNFE là hthang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Suy ra: OQ=OP
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Suy ra: OM=ON
Ta có: OM+OP=MP
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Suy ra: OM=ON
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Suy ra: OQ=OP
Ta có: OM+OP=MP
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Ta có: MP=MO+OP
NQ=NO+OQ
mà MO=NO
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
b: Xét hình thang MNPQ có EF//QP
nên ME/MQ=NF/NP(1)
Xét ΔMQP có EO//QP
nên EO/QP=ME/MQ(2)
Xét ΔNQP có OF//QP
nên OF/QP=NF/NP(3)
Từ (1), (2) và (3) suy ra OE/QP=OF/QP
hay OE=OF
M N P Q A B E F
Xét hình thang MNPQ có A là trung điểm MQ và B là trung điểm NP
=> AB là đường trung bình của hình thang MNPQ
=> AB//MN//PQ
Xét tam giác MQN có: A là trung điểm MQ và AE//MN
=> AE là đường trung bình của tam giác QMN
=> E là trung điểm QN
=> EN=EQ
Tương tự xét tam giác PMN có BF là đường trung bình
=> F là trung điểm MP
=> FM=FP
b) AB là đường trung bình của hình thang MNPQ
=> AB=(MN+QP):2=6 (cm)
AE là đường trung bình của tam giác MQN
=> AE=1/2 MN =1/2 .4=2 (cm)
BF là đường trung bình của tam giác MNP
=> BF =1/2 MN=2 (cm)
=> EF=AB-AE-BF=6-2-2=2 (cm)
ta có MNPQ là hình thang=>MN//PQ
mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)
=>tam giác MNO cân tại O=>MO=NO
=>tam giác QOP cân tại O=>OQ=Op
=>MO+OP=NO+OQ=>NQ=MP
=>MNPQ là hình thang cân
\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)
\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)
mà EF//PQ=>EF//MN
=>MNFE là hình thang(3)
từ (1)(3)=>MNFE là hình thang cân
=>EFPQ là hình thang(4)
(2)(4)=>EFPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOPQ cân tại O
Ta có: OM+OP=MP
ON+OQ=QN
mà OM=ON
và OP=OQ
nên MP=QN
Hình thang MNPQ có MP=QN
nên MNPQ là hình thang cân
Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)
Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)
nên EMNF là hình thang cân
Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)
nên EQPF là hình thang cân