4(x-2)^2=25(1-2x)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !
\(e,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{9}{8}\)
\(f,25\left(x+3\right)^2+ \left(1-5x\right)\left(1+5x\right)=8\)
\(\Leftrightarrow25\left(x^2+6x+9\right)+\left(1-25x^2\right)=8\)
\(\Leftrightarrow25x^2+150x+225+1-25x^2=8\)
\(\Leftrightarrow150x+226=8\)
\(\Leftrightarrow150x=-218\)
\(\Leftrightarrow x=-\dfrac{109}{75}\)
\(g,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(\Leftrightarrow9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(\Leftrightarrow9x^2+18x+9-9x^2+4=10\)
\(\Leftrightarrow18x+13=10\)
\(\Leftrightarrow18x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{6}\)
\(h,-4\left(x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+\left(4x^2-1\right)=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x-5=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
#\(Toru\)
a) x(2x - 1) - (x - 2)(2x + 3) = 5
2x2 - x - 2x2 - 3x + 4x + 6 = 5
0x = -1 (vô lý)
Vậy không tìm được x
b) (x - 3)2 - 25 = 0
(x - 3)2 - 52 = 0
(x - 3 - 5)(x - 3 + 5) = 0
(x - 8)(x + 2) = 0
\(\Rightarrow\) x - 8 = 0 hoặc x + 2 = 0
*) x - 8 = 0
x = 0 + 8
x = 8
*) x + 2 = 0
x = 0 - 2
x = -2
Vậy x = 8; x = -2
c) (x - 1)(2 - x) + (x + 3)2 = 4 - 2x
2x - x2 - 2 + x + x2 + 6x + 9 = 4 - 2x
9x + 7 = 4 - 2x
9x + 2x = 4 - 7
11x = -3
x = \(\dfrac{-3}{11}\)
Vậy x = \(\dfrac{-3}{11}\)
g. \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
f. \(\frac{2}{3}x-\frac{1}{2}x=\frac{5}{12}\)
\(\Leftrightarrow x\left(\frac{2}{3}-\frac{1}{2}\right)=\frac{5}{12}\)
\(\Leftrightarrow x\left(\frac{4}{6}-\frac{3}{6}\right)=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{5}{12}\)
\(\Leftrightarrow x=\frac{5}{12}\div\frac{1}{6}\)
\(\Leftrightarrow x=\frac{30}{12}=\frac{5}{2}\)
a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)
\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)
\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)
\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
1) ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{x^2}=2x-5\\ \Rightarrow\left|x\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x=2x-5\\x=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
2) ĐKXĐ: \(x\ge3\)
\(\sqrt{25x^2-10x+1}=2x-6\\ \Rightarrow\left|5x-1\right|=2x-6\\ \Rightarrow\left[{}\begin{matrix}5x-1=2x-6\\5x-1=6-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
3) ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{25-10x+x^2}=2x-5\\ \Rightarrow\left|x-5\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x-5=2x-5\\x-5=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{10}{3}\left(tm\right)\end{matrix}\right.\)
4) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{1-2x+x^2}=2x-1\\ \Rightarrow\left|x-1\right|=2x-1\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)
3: \(\left(x+5\right)\left(x^2-5x+25\right)-x\left(x-4\right)^2+16x\)
\(=x^3+125-x^3+8x^2-16x+16x\)
\(=8x^2+125\)
\(4\left(x-2\right)^2=25\left(1-2x\right)^2\)
\(\Leftrightarrow4x^2-16x+16=25-100x+100x^2\)
\(\Leftrightarrow4x^2-16x+16-25+100x-100x^2=0\)
\(\Leftrightarrow-96x^2+84x-9=0\)
\(\Leftrightarrow-3\left(32x^2-4x-24x+3\right)=0\)
\(\Leftrightarrow-3\left[4x\left(8x-1\right)-3\left(8x-1\right)\right]=0\)
\(\Leftrightarrow\left(8x-1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x-1=0\\4x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=1\\4x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{8}\\x=\frac{3}{4}\end{cases}}}\)
Vậy ...
Vậy thôi !
4(x - 2)2 = 25(1 - 2x)2
<=> (2x - 4)2 - (5 - 10x)2 = 0
<=> (2x - 4 - 5 + 10x)(2x - 4 + 5 - 10x) = 0
<=> (12x - 9)(-8x + 1) = 0
<=> \(\orbr{\begin{cases}12x-9=0\\-8x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{8}\end{cases}}\)
Vậy S = {3/4; 1/8}