giải phương trình
\(^{X^2+X+12\sqrt{X+1}=36}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12` `ĐK: x >= 0`
`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`
`<=>12\sqrt{3x}=12`
`<=>\sqrt{3x}=1`
`<=>3x=1<=>x=1/3` (t/m)
`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36` `ĐK: x >= -1`
`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`
`<=>12\sqrt{x+1}=36`
`<=>\sqrt{x+1}=3`
`<=>x+1=9`
`<=>x=8` (t/m)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
a/ x=3
b/x=\(-\frac{1+\sqrt{17}}{2}\);\(\frac{1+\sqrt{21}}{2}\)
a) ĐK x>= -1/4
pt <=> 4x^2 + 4x + 2 = 2 căn(4x+1)
<=> 4x^2 + 4x+1 - 2 căn(4x + 1 ) + 1 = 0
<=> 4x^2 + ( căn(4x+1) - 1 )^2 = 0
Để pt có nghiệm khi và chỉ khi 4x^2 = 0
căn(4x+1) - 1 = 0
<=> x = 0
a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)
TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)
TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)
Vậy x=0,5...
d, đk \(x\ge-1\)
=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)
\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)
a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow\left|3x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)
\(\Leftrightarrow\left|x-3\right|=4-3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|2x+1\right|=\left|x+6\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+6\\2x+1=-x-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{3}\end{matrix}\right.\)
1/\(\sqrt{x-4}-\sqrt{1-x}=1\)
Để Pt dc xác định
Thì\(\left\{{}\begin{matrix}x-4\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Vì xét trên trục số ta thấy nó loại nhau
Nên Pt này vô nghiệm
1)ĐKXĐ: \(-4\le x\le1\)
\(\sqrt{x+4}-\sqrt{1-x}=1\\ \Rightarrow\sqrt{x+4}=\sqrt{1-x}+1\\ \Rightarrow x+4=1-x+2\sqrt{1-x}+1\\ \Rightarrow2x+2=2\sqrt{1-x}\\ \Rightarrow x+1=\sqrt{1-x}\\ \Rightarrow x^2+2x+1=1-x\\ \Rightarrow x^2+3x=0\\ \Rightarrow x\left(x+3\right)=0\\ \Rightarrow x=-3\)
Vậy x = -3
2)ĐKXĐ: \(-\sqrt{10}\le x\le\sqrt{10}\)
Với x = -3 thì:
0=0(luôn đúng)
Với x khác -3 thì:
\(\left(x+3\right)\sqrt{10-x^2}=x^2-x+12\\ \Rightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x+3\right)\left(x-4\right)\\ \Rightarrow\sqrt{10-x^2}=x-4\\ \Rightarrow10-x^2=x^2-8x+16\\ \Rightarrow2x^2-8x+6=0\\ \Rightarrow x^2-4x+3=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow x\in\left\{1;3\right\}\)
Vậy x\(\in\left\{-3;1;3\right\}\)
ĐK : \(x+1>0=>x\ge-1\)
Đặt \(\sqrt{x+1}=t=>t\ge0=>x+1=t^2=>x=t^2-1=>x^2=t^4-2t^2+1\)
Khi đó ta có \(t^4-2t^2+1+t^2-1+12t-36=0\)
=>\(t^4-t^2+12t-36=0\)
=>\(t^4-2t^3+2t^3-4t^2+3t^2-6t+18t-36=0\)
=>\(t^3\left(t-2\right)+2t^2\left(t-2\right)+3t\left(t-2\right)+18\left(t-2\right)=0\)
=>\(\left(t-2\right)\left(t^3+2t^2+3t+18\right)=0\)
=>\(\hept{\begin{cases}t=2\\t^3+2t^2+3t+18=0\left(loại\right)do\left(t\ge0=>t^3+2t^2+3t+18>0\right)\end{cases}}\)
=>\(t=2=>x+1=4=>x=3\)(thảo mãn đk)
zậy...