so sánh
giải ra nha mn
a , 4 mũ 333 và 3 mũ 445
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4^{333}=\left(4^3\right)^{111}=64^{111}< 81^{111}=\left(3^4\right)^{111}=3^{444}< 3^{445}\\ b,39^{15}>36^{15}=\left(6^2\right)^{15}=6^{30}\\ c,25^{45}=\left(5^2\right)^{45}=5^{90}< 5^{102}=\left(5^3\right)^{34}=125^{34}\)
a: \(5^{300}=25^{150}\)
\(3^{450}=27^{150}\)
mà 25<27
nên \(5^{300}< 3^{450}\)
a: 5300=251505300=25150
3450=271503450=27150
mà 25<27
nên 5300<3450
`#3107.101107`
a)
`64^150` và `4^450`
Ta có:
`64^150 = (4^3)^150 = 4^(3*150) = 4^450`
Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`
Vậy, `64^150 = 4^450`
b)
`81^64` và `27^100`
Ta có:
`81^64 = (3^4)^64 = 3^(4*64) = 3^256`
`27^100 = (3^3)^100 = 3^(3*100) = 3^300`
Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`
Vậy, `81^64 < 27^100`
c)
`125^1000` và `25^3000`
Ta có:
`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`
Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`
Vậy, `125^1000 < 25^3000`
d)
`4^30` và `3^40`
Ta có:
`4^30 = 4^(3*10) = (4^3)^10 = 64^10`
`3^40 = 3^(4*10) = (3^4)^10 = 81^10`
Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`
Vậy, `4^30 < 3^40`
m)
`2^5000` và `5^2000`
Ta có:
`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`
`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`
Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`
Vậy, `2^5000 > 5^2000`
h)
`6^450` và `3^750`
Ta có:
`6^450 = 6^(150*3) = (6^3)^150 = 216^150`
`3^750 = 3^(150*5) = (3^5)^150 = 243^150`
Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`
Vậy, `6^450 < 3^750`
0)
`333^444` và `444^333`
Ta có:
`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`
`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`
Vì `81 > 64;` `111^444 > 111^333`
`=> 81^111 * 111^444 > 64^111 * 111^333`
Vậy, `333^444 > 444^333.`
a) Ta có:
\(64^{150}=\left(2^6\right)^{150}=2^{900}\)
\(4^{450}=\left(2^2\right)^{450}=2^{900}\)
Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)
b) Ta có:
\(81^{64}=\left(3^4\right)^{64}=3^{256}\)
\(27^{100}=\left(3^3\right)^{100}=3^{300}\)
Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)
c) Ta có:
\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)
Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)
d) Ta có:
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)
m) Ta có:
\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)
\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)
Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)
h) Ta có:
\(6^{450}=\left(6^3\right)^{150}=216^{150}\)
\(3^{750}=\left(3^5\right)^{150}=243^{150}\)
Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)
....
(x+6)4=4096
(x+6)4=84
==> x+6=8 hoặc x+6=—8
==> x=8–6 hoặc x=—8–6
==> x= 2 hoặc x=—14
2x—3=128
2x—3=27
==> x—3=7
x=7+3
x=10
Ss: 22018 và 16900
Ta có 16900=(24)900=23600
Vì 22018<23600
Nên 22018<23600
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
tick cái bạn
a,444^333>333^444
b3^486>4^363
c,5^217<123^72
d,31^11>17^14
\(2^{x-3}=128\Leftrightarrow2^{x-3}=2^7\Rightarrow x-3=7\Leftrightarrow x=10\)
\(\left(x+6\right)^4=4096\Leftrightarrow\left(x+6\right)^4=2^{12}=\left(2^3\right)^4=8^4\Rightarrow x+6=8\Leftrightarrow x=2\)
\(2^{2018}=\left(2^4\right)^{504}.2^2==16^{504}.4< 16^{900}\\ \)
\(17^{20}>16^{20}=\left(4^2\right)^{20}=4^{40}\)
\(3^{444}=\left(3^4\right)^{111}=81^{111}>64^{111}=\left(4^3\right)^{111}=4^{333}\\ \)
333444=(3334)111=(1114.81)111333444=(3334)111=(1114.81)111
444333=(4443)111=(1113.64)111444333=(4443)111=(1113.64)111
Dễ thấy 1114.81>1113.641114.81>1113.64
⇒333444>444333⇒333444>444333