K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi O là trung điểm của MN,I là trung điểm của DEVì \(\hept{\begin{cases}DM//BC\left(gt\right)\\NE//BC\left(gt\right)\end{cases}\Rightarrow}DM//NE\)Xét tam giác ANE có DM//NE(cmt) và D là trung điểm của AE( vì...)\(\Rightarrow M\)là trung điểm của AN\(\Rightarrow AM=MN\left(1\right)\)Xét hình thang MDBC có: MD//BC và E là trung điểm của DB(vì...)\(\Rightarrow N\)là trung điểm của MC\(\Rightarrow MN=NC\left(2\right)\)Từ (1) và (2) \(\Rightarrow...
Đọc tiếp

Gọi O là trung điểm của MN,I là trung điểm của DE

Vì \(\hept{\begin{cases}DM//BC\left(gt\right)\\NE//BC\left(gt\right)\end{cases}\Rightarrow}DM//NE\)

Xét tam giác ANE có DM//NE(cmt) và D là trung điểm của AE( vì...)

\(\Rightarrow M\)là trung điểm của AN

\(\Rightarrow AM=MN\left(1\right)\)

Xét hình thang MDBC có: MD//BC và E là trung điểm của DB(vì...)

\(\Rightarrow N\)là trung điểm của MC

\(\Rightarrow MN=NC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AM=MN=NC\)

Vì O là trung điểm của MN \(\Rightarrow OM=ON=\frac{1}{2}MN\)

\(\Rightarrow OM+MA=ON+NC\)( vì MA=NC(cmt))

\(\Rightarrow AO=OC\)

\(\Rightarrow O\)là trung điểm của AC

CMTT \(AI=IB\)

\(\Rightarrow I\)là trung điểm của AB

Xét tam giác ABC có: 

I là trung điểm của AB(cmt) và O là trung điểm của AC(cmt)

\(\Rightarrow OI\)là đường trung bình của tam giác ABC

\(\Rightarrow OI=\frac{1}{2}BC\left(tc\right)=2\)(cm) vì BC=4cm

Xét hình thang MDEN có O là trung điểm của MN (c.vẽ) ,I là trung điểm của DE 

\(\Rightarrow OI\)là đường trung bình của hình thang MDEN

\(\Rightarrow\frac{MD+NE}{2}=OI\left(tc\right)\)

\(\Rightarrow MD+NE=4\left(3\right)\)

Xét tam giác ANE có: M là trung điểm của AN,D là trung điểm của AE

\(\Rightarrow MD\)là đường trung bình của tam giác ANE

\(\Rightarrow MD=\frac{1}{2}NE\)Hay NE=2MD(4)

THay (4) vào (3) ta được:

\(3MD=4\)

\(\Rightarrow MD=\frac{4}{3}\left(cm\right)\)

\(\Rightarrow NE=\frac{8}{3}\left(cm\right)\)

 

 

0
8 tháng 2 2020

a/tacó: góc DMC là góc nội tiếp chắn nửa đường tròn đường kính DC

=> góc DMC =90o

tứ giác CKFM có: \(\widehat{CKF}+\widehat{CMF}=180^o\)

mà 2 góc này ở vị trí đối nhau

=> tứ giác CKFM nội tiếp đường tròn (đpcm)

b/theo phần a ta có: tứ giác CKFM nội tiếp đường tròn

=> \(\widehat{KCM}+\widehat{KFM}=180^o\)\(\Rightarrow\widehat{KCM}=180^o-\widehat{KFM}\left(1\right)\)

Ta lại có :\(\widehat{DFK}+\widehat{KFM}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{DFK}=180^o-\widehat{KFM}\left(2\right)\)

Từ (1) và (2) ta có: \(\widehat{DFK}=\widehat{KCM}\)

xét tam giác DFK và tam giác KCE có:

\(\widehat{DFK}=\widehat{KCE}\left(cmt\right)\)

\(\widehat{DKF}=\widehat{ÈKC}\left(=90^o\right)\)

\(\Rightarrow\Delta DKF~\Delta EKC\left(g-g\right)\)

\(\Rightarrow\frac{KD}{KE}=\frac{KE}{KC}\Rightarrow KD.KC=KE.KF\left(đpcm\right)\)

c/ta có: \(\widehat{DMI}=\widehat{DCM}\)(vì cùng chắn cung DM nhỏ)

mà \(\widehat{DCM}=\widehat{DFK}\) (theo phần a)

do đó : \(\widehat{DMI}=\widehat{DFK}\) mà \(\widehat{DFK}=\widehat{IFM}\)(2 góc đối đỉnh)

\(\Rightarrow\widehat{IF̀M}=\widehat{FMI}\)

\(\Rightarrow\Delta IFM\) cân tại I

=> IF=IM(*)

\(\Delta EFM\) vuông tại M (vì MI là tiếp tuyến của đường tròn tâm O tại tiếp điểm M )có : \(\widehat{FEM}+\widehat{EFM}=90^o\left(3\right)\)

\(\widehat{FMI}+\widehat{IME}=90^o\)(4)

từ (3) và (4) ta có: \(\widehat{IEM}=\widehat{IME}\) (vì \(\widehat{EFM}=\widehat{FMI}\))

=> tam giác IME cân tại I

\(\Rightarrow IE=IM\)(2*)

Từ (*) và (2*) ta có: IF=IE(đpcm)

9 tháng 2 2020

Cảm ơn bạn nhiều nhé <3 Mình sẽ vote câu này là đúng. Cố gắng giải thêm câu d) nhé <3

14 tháng 4 2020

Bài 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)(đpcm)

1 tháng 10 2016

Tớ chỉ làm được một ít thôi,mong bạn thông cảm :)

Phần vẽ hình và ghi giả thuyết ,kết luận bạn tự làm nhé !

a) Xét tam giác MCB, ta có :

        CE = ME (GT)

        CF  = FB (GT)

Nên EF là đường trung bình của tam giác MCB

=> EF // MB

=> EF // AB (Vì M € AB) (1)

Xét tam giác ADM ,ta có :

    AK = KD (GT)

    MI  = ID (GT)

Nên IK là đường trung bình của tam giác ADM

=> IK // AM

=> IK // AB (Vì M € AB) (2)

Từ (1) và (2) => EF // IK

b) Xét tứ giác KIFE ,ta có :

        EF // IK [câu (a)]

=> KIFE là hình thang

Sau đó bạn cần chứng minh cho góc K = góc I hoặc góc E = góc F

Do đó KIFE sẽ là hình thang cân

Vậy EI = KF

[ Ở câu b) này chỉ là tớ dự đoán phương hướng giải thôi ,chứ tớ cũng không biết có làm được không.]

c) Xét tam giác MCD ,ta có :

        ME = CE (GT)

        MI  = ID (GT)

Nên EI là đường trung bình của tam giác MCD

=> EI = 1/2 CD (3)

mà EI = KF (4)

Từ (3) và (4) => KF = 1/2 CD

 Các ý của bài này có liên quan đến nhau ,bạn hãy dựa vào đó để giải câu b) nhé !

    Good luck !

1 tháng 10 2016

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chị @Hoàng Lê Bảo Ngọc

 Anh @Nguyễn Huy Thắng 

 giúp bạn này nè 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

cho đề này:

cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)

3 tháng 10 2020

E, F là trung điểm của AD và BC (đề bài) => EF là đường trung bình của ht ABCD => EF//AB//CD

+ Xét tg ABD có

E là trung điểm AD (đề bài)

EI//AB

=> EI là đường trung bình của tg ABD => EI=AB/2 (1)

+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)

Từ (1) và (2) => EI=KF 

+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2

\(\Rightarrow IF-EI=IK+KF-EI=IK=\frac{CD}{2}-\frac{AB}{2}=\frac{CD-AB}{2}.\)

b/ Câu b dựa vào KQ của câu a