cho duong tron tam 0 ban kinh r M nam ngoai (0) sao cho M=2r . kẻ tiếp tuyến MA,MB của (0) A và B la tiep diem . nối AB cắt OM tại H , mb cắt AO tại E.
a) tính oh ab theo r
b) tính góc AEB
c) tính BE theo R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
MA là tiếp tuyến có A là tiếp điểm(gt)
MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OA=OB(=R)
nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MA=MB(cmt)
nên M nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
hay OM\(\perp\)AB
Xét (O) có
A\(\in\)(O)(gt)
D\(\in\)(O)(gt)
Do đó: OA=OD(=R)
mà A,O,D thẳng hàng(gt)
nên O là trung điểm của AD
Xét (O) có
O là trung điểm của AD(cmt)
O là tâm của đường tròn(O)(gt)
Do đó: AD là đường kính của (O)
Xét (O) có
ΔADB nội tiếp đường tròn(A,D,B\(\in\)(O))
AD là đường kính của (O)(cmt)
Do đó: ΔADB vuông tại B(Định lí)
hay DB\(\perp\)AB
Ta có: DB\(\perp\)AB(cmt)
OM\(\perp\)AB(cmt)
Do đó: MO//BD(Định lí 1 từ vuông góc tới song song)