tìm x :
a. x^2 - 1 = 63
b, x-1/5 = 1/7
c, 1 + 2 + 3 + ... + x = 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Ư(-12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
b) B(-4)={0;-4;-8;4;8;...}
Câu 2:
a) Ta có: \(x-15=11-\left(-32\right)\)
\(\Leftrightarrow x-15=11+32\)
\(\Leftrightarrow x=43+15=58\)
Vậy: x=58
b) Ta có: \(13-\left(5-x\right)=7\)
\(\Leftrightarrow13-5+x=7\)
\(\Leftrightarrow x+8=7\)
hay x=-1
Vậy: x=-1
c) Ta có: \(x-\dfrac{3}{5}=5.12\)
\(\Leftrightarrow x-0.6=5.12\)
hay x=5,72
Vậy: x=5,72
d) Ta có: \(\dfrac{x+1}{-2}=\dfrac{-8}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=\left(-2\right)\cdot\left(-8\right)=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-5\right\}\)
` 8/23 . 46/24 =1/3 .x`
`=>8/23 . 23/12 =1/3 . x`
`=> 1/3 . x=2/3`
`=>x=2/3 : 1/3`
`=>x=2/3 . 3`
`=> x= 6/3`
`=>x=2`
`----`
`1/5 : x= 1/5-1/7`
`=>1/5 : x= 7/35 - 5/35`
`=> 1/5 :x= 2/35`
`=>x= 1/5 : 2/35`
`=>x=1/5 . 35/2`
`=>x=7/2`
`----`
`4/9 - (x-1/2)^2 =1/3`
`=> (x-1/2)^2 =4/9-1/3`
`=> (x-1/2)^2 =4/9- 3/9`
`=> (x-1/2)^2 =1/9`
`=> (x-1/2)^2 = (+- 1/3)^2`
`@ TH1`
`x-1/2=1/3`
`=>x=1/3+1/2`
`=>x= 2/6 + 3/6`
``=>x= 5/6`
`@ TH2`
`x-1/2=-1/3`
`=>x=-1/3 +1/2`
`=>x= -2/6 + 3/6`
`=>x=1/6`
`----`
`3,2 . x-(4/5+2/3) : 3 2/3 = 7/10`
`=> 3,2 . x-22/15 : 11/3 = 7/10`
`=> 3,2 . x-22/15 = 7/10 . 11/3`
`=> 3,2 . x-22/15 =77/30`
`=> 3,2 .x= 77/30 + 22/15`
`=> 3,2 .x=121/30`
`=>x= 121/30. 5/16`
`=>x= 121/96`
a (x + 2) - x(x + 3) = 2
x + 2 - x(x + 3) - 2 = 0
x + x(x + 3) = 0
x(1 + x + 3) = 0
x(x + 4) = 0
x = 0 hoặc x + 4 = 0
*) x + 4 = 0
x = -4
Vậy x = -4; x = 0
b) (x + 2)(x - 2) - (x + 1)² = 7
x² - 4 - x² - 2x - 1 = 7
-2x - 5 = 7
-2x = 7 + 5
-2x = 12
x = 12 : (-2)
x = -6
c) 6x² - (2x + 1)(3x - 2) = 1
6x² - 6x² + 4x - 3x + 2 = 1
x + 2 = 1
x = 1 - 2
x = -1
d) (x + 2)(x + 3) - (x - 2)(x + 1) = 2
x² + 3x + 2x + 6 - x² - x + 2x + 2 = 2
6x + 8 = 2
6x = 2 - 8
6x = -6
x = -6 : 6
x = -1
e) 6(x - 1)(x + 1) - (2x - 1)(3x + 2) + 3 = 0
6x² - 6 - 6x² - 4x + 3x + 2 + 3 = 0
-x - 1 = 0
x = -1
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
\(a,x+\dfrac{2}{5}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{2}{5}\)
\(x=\dfrac{5}{10}-\dfrac{4}{10}\)
\(\Rightarrow x=....\)
\(a,x+\dfrac{2}{5}=\dfrac{1}{2}\\ \Rightarrow x=\dfrac{1}{2}-\dfrac{2}{5}=\dfrac{5-4}{10}=\dfrac{1}{10}\)
\(b,x-\dfrac{2}{5}=\dfrac{1}{7}\\ \Rightarrow x=\dfrac{1}{7}+\dfrac{2}{5}=\dfrac{5+14}{35}=\dfrac{19}{35}\)
\(c,x\cdot\dfrac{3}{4}=\dfrac{9}{20}\\ \Rightarrow x=\dfrac{9}{20}:\dfrac{3}{4}=\dfrac{9}{20}\cdot\dfrac{4}{3}=\dfrac{3\cdot1}{5\cdot1}=\dfrac{3}{5}\)
\(d,x:\dfrac{1}{7}=14\\ \Rightarrow x=14\cdot\dfrac{1}{7}=\dfrac{14}{7}=2\)
\(e,\dfrac{2}{3}-x=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{2}{3}-\dfrac{1}{5}=\dfrac{10-3}{15}=\dfrac{7}{15}\)
\(f,\dfrac{4}{15}:x=\dfrac{12}{25}\\ \Rightarrow x=\dfrac{4}{15}:\dfrac{12}{25}=\dfrac{4}{15}\cdot\dfrac{25}{12}=\dfrac{1\cdot5}{3\cdot3}=\dfrac{5}{9}\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a)
\(A=\frac{x+\sqrt{x}+1}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{(\sqrt{x}-1)(x+1)}\right]\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{(\sqrt{x}-1)(x+1)}=\frac{x+\sqrt{x}+1}{x+1}.\frac{(\sqrt{x}-1)(x+1)}{(\sqrt{x}-1)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b)
\(A=7\Leftrightarrow x+\sqrt{x}+1=7(\sqrt{x}-1)\)
\(\Leftrightarrow x-6\sqrt{x}+8=0\Leftrightarrow (\sqrt{x}-2)(\sqrt{x}-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=4\\ x=16\end{matrix}\right.\) (đều thỏa mãn)
c)
\(x=2(2+\sqrt{3})=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\Rightarrow \sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\frac{4+2\sqrt{3}+\sqrt{3}+1+1}{\sqrt{3}}=\frac{6+3\sqrt{3}}{\sqrt{3}}=3+2\sqrt{3}\)
d)
\(A< 1\Leftrightarrow \frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{x-2\sqrt{x}+2}{\sqrt{x}-1}<0\)
\(\Leftrightarrow \frac{(\sqrt{x}-1)^2+1}{\sqrt{x}-1}<0\Leftrightarrow \sqrt{x}-1< 0\Leftrightarrow 0\leq x< 1\)
`a)5/8x+2/5=1/5`
`=>5/8x=1/5-2/5`
`=>5/8x=-1/5`
`=>x=-1/5:5/8=-8/25`
`b)5/7:x+11/7=18/7`
`=>5/7:x=18/7-11/7`
`=>5/7:x=1`
`=>x=5/7`
`c)(-1,2).(-3/24)+(0,4-1 4/15):1 2/3`
`=(-6/5).(-1/8)+(2/5-19/15):5/3`
`=3/20+(-13/15)*3/5`
`=3/20-13/25=-37/100`
a)5/8.x+2/5=1/5
5/8.x=1/5 - 2/5
5/8.x=-1/5
x=(-1/5):5/8
x=(-1/5).8/5
x=-8/25. Vậy x=-8/25
b)5/7:x +11/7=18/7
5/7:x=1
x=5/7:1
x=5/7. Vậy x=5/7
Giải:
a) \(\dfrac{-5}{8}=\dfrac{x}{16}\)
\(\Rightarrow x=\dfrac{16.-5}{8}=-10\)
\(\dfrac{3x}{9}=\dfrac{2}{6}\)
\(\Rightarrow3x=\dfrac{2.9}{6}=3\)
\(\Rightarrow x=1\)
b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)
\(\Rightarrow x+3=\dfrac{1.15}{3}=5\)
\(\Rightarrow x=2\)
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\)
\(\Rightarrow x=10\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
\(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\)
\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\)
\(\Rightarrow x=-29\)
\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\)
d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\)
\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\)
\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\)
\(\Rightarrow x\in\left\{-3;-2;-1\right\}\)
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;2\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\)
\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\)
\(\Rightarrow5x+230=100x+40\)
\(\Rightarrow5x-100x=40-230\)
\(\Rightarrow-95x=-190\)
\(\Rightarrow x=-190:-95\)
\(\Rightarrow x=2\)
\(y\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y^2+5=86\)
\(\Rightarrow y^2=86-5\)
\(\Rightarrow y^2=81\)
\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)
Chúc bạn học tốt!
a, x2=63+1
x2=64
\(\orbr{\begin{cases}x=-8\\x=8\end{cases}}\)
Vậy x= - 8 hoặc x=8
b,x-\(\frac{1}{5}\)=\(\frac{1}{7}\)
x=\(\frac{1}{7}\)+\(\frac{1}{5}\)=\(\frac{12}{35}\)
Vậy x=\(\frac{12}{35}\)
c, Từ 1 đến x có x số hạng
Tổng các số hạng từ 1 đến x là:
\(\frac{x.\left(x+1\right)}{2}\)=45
x.(x+1)=45.2=90
Suy ra x=9
Vậy x=9
a. x^2 - 1 = 63
=> x^2 = 64
=> x = 8 hoặc x = -8
b, x-1/5 = 1/7
=> x = 1/7 + 1/5
=> x = 12/35
c, 1 + 2 + 3 + ... + x = 45
=> (1 + x)x : 2 = 45
=> x(x + 1) = 90
có : 9.10 = 90
=> x = 9