Có M=\(\frac{3\sqrt{x}}{\sqrt{x}-3}\)
Tìm x sao cho M=M6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+3}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right)\) ĐKXĐ : \(x\ge0;x\ne-3;x\ne3\)
\(M=\frac{\left(\sqrt{x}+3\right)^2-\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-3}\)
\(M=\frac{x+6\sqrt{x}+9-x+6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{-3}\)
\(M=\frac{12\sqrt{x}}{\sqrt{x}+3}.\frac{1}{-3}\)
\(M=\frac{-4\sqrt{x}}{\sqrt{x}+3}\)
ĐKXĐ của P là \(x\ge0;x\ne9\)
\(P=\left(\frac{2}{\sqrt{x}-3}+\frac{1}{\sqrt{x}+3}\right)\div\frac{\sqrt{x}+1}{\sqrt{x}-3}\)\(=\frac{2\left(\sqrt{x}+3\right)+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}+3}{\sqrt{x}+3}\cdot\frac{1}{\sqrt{x}+1}=\frac{3}{\sqrt{x}+3}\)
\(\Rightarrow\frac{1}{P}=\frac{\sqrt{x}+3}{3}=m\)\(\Leftrightarrow\frac{\sqrt{x}}{3}=m-1\Leftrightarrow\sqrt{x}=3\left(m-1\right)\)
Để phương trình trên có nghiệm thì \(\hept{\begin{cases}3\left(m-1\right)\ge0\\9\left(m-1\right)^2\ne9\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge1\\\hept{\begin{cases}m\ne0\\m\ne2\end{cases}}\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ge1\\m\ne2\end{cases}}}\)
\(\hept{\begin{cases}3\left(m-1\right)\ge0\\9\left(m-1\right)^2\ne9\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge1\\\hept{\begin{cases}m\ne0\\m\ne2\end{cases}}\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ge1\\m\ne2\end{cases}}}\)\(3\left(m-1\right)\ge0\)và \(9\left(m-1\right)^2\ne9\)
Giải hai điều kiện trên ta được \(m\ge1\) và \(m\ne2\)
Vậy để phương trình có nghiệm thì \(\hept{\begin{cases}m\ge1\\m\ne2\end{cases}}\)
b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)
\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)
Đối chiếu điều kiện ta có:
\(x\in\left\{1,16,25\right\}\)
Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\) Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)
\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)
Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)
Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)
Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)
Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)
Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều
P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ!
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Ta có: M có 2 trường hợp là M=0 hoặc bằng 1
TH1: M= 0
Ta có: \(\frac{3\sqrt{x}}{\sqrt{x}-3}=0\)
\(\Leftrightarrow3\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\)
TH2: M = 1
Ta có:\(1=\frac{3\sqrt{x}}{\sqrt{x-3}}\)
Nhân 2 vế với \(\sqrt{x}-3\), ta có: \(\sqrt{x}-3=3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}-3\sqrt{x}=3\)
\(\Leftrightarrow-2\sqrt{x}=3\)
Đổi dấu cả 2 vế, ta có:\(2\sqrt{x}=-3\)
Vì \(2\sqrt{x}\)luôn lớn hơn hoặc bằng 0 nên phương trình này vô nghiệm.
Vậy x phải bằng 0