K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

áp dụng t/c dãy ts = nhau

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)

x/y=1=> x=y

y/z=1=>y=z

z/x=1=>z=x

=> x=y=z

\(\frac{x^{2019}.y^{2020}}{z^{4039}}=\frac{x^{2019}.x^{2020}}{x^{4039}}=\frac{x^{4039}}{x^{4039}}=1\)

11 tháng 3 2020

Bạn hãy dựa vào link này mà tự làm nhé : 

https://olm.vn/hoi-dap/detail/246211413079.html

Bài làm của mình đó !

7 tháng 7 2020

meo hieu haha

31 tháng 7 2020

ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

31 tháng 7 2020

a,Sử dụng tính chất của dãy tỉ số bằng nhau

 \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)

\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)

19 tháng 12 2019
https://i.imgur.com/jd3dWdi.jpg
10 tháng 6 2020

x,y,z trong căn mak bạn nên : x = 2022, y = 2023, z = 2024 chứ nhò

20 tháng 3 2021

Ta có: \(x^3+y^3+z^3=3xyz\)

   \(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

   \(\Leftrightarrow\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3xy\left(x+y\right)-3xyz=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left[\left(x+y+z\right)^2-3.\left(x+y\right).z\right]-3xy\left(x+y+z\right)=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2zx-3xz-3yz-3xy\right)=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2-xz-yz-xy\right)=0\)

\(x+y+z=0\)\(\Rightarrow\)\(C=\frac{x^{2019}+y^{2019}+z^{2019}}{0}\)( Loại )

\(x^2+y^2+z^2-xz-yz-xy=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xz-2yz-2xy=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\)\(x=y=z\)

\(\Rightarrow\)\(C=\frac{x^{2019}+x^{2019}+x^{2019}}{\left(x+x+x\right)^{2019}}=\frac{3.x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)

Vậy.......

20 tháng 3 2021

Từ x3 + y3 + z3 = 3xyz

=> ( x + y + z )( x2 + y2 + z2 - xy - yz - xz ) = 0 ( phân tích như bạn kia )

Vì x + y + z ≠ 0

=> x2 + y2 + z2 - xy - yz - xz = 0

<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0

<=> ( x - y )2 + ( y - z )2 + ( x - z )2 = 0

VT ≥ 0 ∀ x,y,z. Đẳng thức xảy ra <=> x=y=z

Khi đó \(C=\frac{x^{2019}+y^{2019}+z^{2019}}{\left(x+y+z\right)^{2019}}=\frac{3x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}\cdot x^{2019}}=\frac{1}{3^{2018}}\)

11 tháng 4 2017

dat a=x-y

b=y-z 

c=z-x

a+b+c=0=x+y+z

\(\left(\frac{a}{z}+\frac{b}{x}+\frac{c}{y}\right)\left(\frac{z}{a}+\frac{x}{b}+\frac{y}{c}\right)\)

dung bumiakopsky de giai

...........................................