K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2020

\(S=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{10}=\frac{2}{5}\)

Dấu "=" xảy ra khi \(x=y=5\)

16 tháng 7 2020

Áp dụng Cauchy Schwarz

\(A=\frac{1}{x}+\frac{1}{y}+\frac{9}{z}\)

\(\ge\frac{\left(1+1+3\right)^2}{x+y+z}=\frac{25}{x+y+z}=25\)

Đẳng thức xảy ra bạn tự giải

16 tháng 11 2015

\(A=\frac{1}{x^2+y^2}+\frac{2}{2xy}\ge\frac{\left(1+\sqrt{2}\right)^2}{x^2+y^2+2xy}=\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y\right)^2}=3+2\sqrt{2}\)

Amin =\(3+2\sqrt{2}\) khi  x =y =1/2

8 tháng 4 2018

Ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{\left(x-1\right)\left(y-1\right)}{xy}\left(1+\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}\right)\)

\(=\frac{xy}{xy}\left(1+\frac{1}{xy}+\frac{1}{xy}\right)\)

\(=1+\frac{2}{xy}\)

Lại có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P=1+\frac{2}{xy}\ge1+8=9\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

26 tháng 6 2018

với x;y>0 ta có:\(\)

\(8>=x^3+y^3+6xy\Rightarrow8+1=9>=x^3+y^3+1+6xy>=3\sqrt{x^3y^3\cdot1}+6xy=3xy+6xy=9xy\)  (bđt cosi)

\(\Rightarrow9>=9xy\Rightarrow1>=xy\Rightarrow xy< =1\)

\(A=\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{xy}>=\frac{2}{1}=2\)(bđt cosi)

dấu = xảy ra khi x=y=1

vậy min A là 2 khi x=y=1

26 tháng 6 2018

\(3\sqrt[3]{x^3y^3\cdot1}\)nhá 

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

\(S=\frac{2010^2}{2010x}+\frac{1}{2010y}-\frac{2010}{1005}\ge\frac{2011^2}{2010\left(x+y\right)}-\frac{2010}{1005}\)

\(\frac{2011^2}{2010.\frac{2011}{2012}}-\frac{2010}{1005}=\frac{2021056}{1005}\)

1 tháng 8 2017

2. Xem tại đây

1.  \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)

\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)

\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=y=z=1\)

1 tháng 8 2017

1 ) có cách theo cosi đó 

áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)

cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)

minP=3 khi x=y=z=1