\(\frac{x}{x-2}=\frac{x-6}{x-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)\frac{{{x^2} + 4{\rm{x}} + 4}}{{{x^2} - 4}} + \frac{x}{{2 - x}} + \frac{{4 - x}}{{5{\rm{x}} - 10}}\\ = \frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} - \frac{x}{{x - 2}} + \frac{{4 - x}}{{5\left( {x - 2} \right)}}\\ = \frac{{x + 2}}{{x - 2}} - \frac{x}{{x - 2}} + \frac{{4 - x}}{{5\left( {x - 2} \right)}}\\ = \frac{{5\left( {x + 2} \right) - 5x + 4 - x}}{{5\left( {x - 2} \right)}} = \frac{{ - x + 14}}{{5\left( {x - 2} \right)}}\end{array}\)
\(\begin{array}{l}b)\frac{x}{{{x^2} + 1}} - \left( {\frac{3}{{x + 6}} + \frac{{x - 2}}{{x + 4}}} \right) + \left[ {\frac{3}{{x + 6}} - \left( {\frac{1}{{{x^2} + 1}} - \frac{{x - 2}}{{x + 4}}} \right)} \right]\\ = \frac{x}{{{x^2} + 1}} - \frac{3}{{x + 6}} - \frac{{x - 2}}{{x + 4}} + \frac{3}{{x + 6}} - \frac{1}{{{x^2} + 1}} + \frac{{x - 2}}{{x + 4}}\\ = \frac{x}{{{x^2} + 1}} - \frac{1}{{{x^2} + 1}} = \frac{{x - 1}}{{{x^2} + 1}}\end{array}\)
\(\left(\frac{x-10}{1994}-1\right)\)+\(\left(\frac{x-8}{1996}-1\right)\)+\(\left(\frac{x-6}{1998}-1\right)\)+\(\left(\frac{x-4}{2000}-1\right)\)+\(\left(\frac{x-2}{2002}-1\right)\)=\(\left(\frac{x-2002}{2}-1\right)\)+\(\left(\frac{x-2000}{4}-1\right)\)+\(\left(\frac{x-1998}{6}-1\right)\)+\(\left(\frac{x-1996}{8}-1\right)\)+\(\left(\frac{x-1994}{10}-1\right)\)
suy ra \(\frac{x-2004}{1994}\)+\(\frac{x-2004}{1996}\)+\(\frac{x-2004}{1998}\)+\(\frac{x-2004}{2000}\)+\(\frac{x-2004}{2002}\)=\(\frac{x-2004}{2}\)+\(\frac{x-2004}{4}\)+\(\frac{x-2004}{6}\)+\(\frac{x-2004}{8}\)+\(\frac{x-2004}{10}\)
suy ra \(\frac{x-2004}{1994}\)+\(\frac{x-2004}{1996}\)+\(\frac{x-2004}{1998}\)+\(\frac{x-2004}{2000}\)+\(\frac{x-2004}{2002}\)- \(\frac{x-2004}{2}\)- \(\frac{x-2004}{4}\)- \(\frac{x-2004}{6}\)- \(\frac{x-2004}{8}\)- \(\frac{x-2004}{10}\)=0
suy ra (x-2004) . ( \(\frac{1}{1994}\)+\(\frac{1}{1996}\)+\(\frac{1}{1998}\)+\(\frac{1}{2000}\)+\(\frac{1}{2002}\)-\(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{6}\)- \(\frac{1}{8}\)- \(\frac{1}{10}\))=0
Vì \(\frac{1}{1994}\)+\(\frac{1}{1996}\)+\(\frac{1}{1998}\)+\(\frac{1}{2000}\)+\(\frac{1}{2002}\)-\(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{6}\)- \(\frac{1}{8}\)- \(\frac{1}{10}\) khác 0
nên x-2004=0 suy ra x=2004
a) \(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)
ĐKXĐ \(x\ne-2,-3,-4\)
=> \(\frac{1}{x+2}+\frac{2}{x+3}-\frac{6}{x+4}=0\)
=> \(\frac{3x+7}{\left(x+2\right)\left(x+3\right)}-\frac{6}{x+4}=0\)
=> \(\frac{\left(3x+7\right)\left(x+4\right)-6\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+4\right)}=0\)
=> (3x + 7)(x + 4) - 6(x2 + 5x + 6) = 0
=> 3x2 + 19x + 28 - 6x2 - 30x - 36 = 0
=> -3x2 - 11x - 8 = 0
=> -3x2 - 3x - 8x - 8 = 0
=> -3x(x + 1) - 8(x + 1) = 0
=> (x + 1)(-3x - 8) = 0
=> \(\orbr{\begin{cases}x=-1\\x=-\frac{8}{3}\end{cases}}\)
Vậy ...
b) Thiếu dữ liệu cuả đề
c) \(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\)
ĐKXĐ \(x\ne-2;-3\)
=> \(\frac{\left(6x+22\right)\left(x+3\right)-\left(x+2\right)\left(2x+7\right)}{\left(x+2\right)\left(x+3\right)}=\frac{x+4}{\left(x+2\right)\left(x+3\right)}\)
=> \(6x^2+40x+66-x\left(2x+7\right)-2\left(2x+7\right)=x+4\)
=> \(6x^2+40x+66-2x^2-7x-4x-14=x+4\)
=> 4x2 + 29x + 52 = x + 4
=> 4x2 + 29x + 52 - x - 4 = 0
=> 4x2 + 28x + 48 = 0
=> 4(x2 + 7x + 12) = 0
=> x2 + 7x +12 = 0
=> x2 + 3x + 4x + 12 = 0
=> x(x + 3) + 4(x + 3) = 0
=> (x + 3)(x + 4) = 0
=> \(\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
Mà \(x\ne-2,-3\)nên x = -3 loại
Vậy x = -4
\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)
\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)
\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)
\(\frac{x}{x-2}=\frac{x-6}{x-4}\) đkxđ \(x\ne2;4\)
\(\Leftrightarrow x\left(x-4\right)=\left(x-2\right)\left(x-6\right)\)
\(\Leftrightarrow-4x=-8x+12\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=3\left(tmđk\right)\)