Có tìm được các số nguyên a,b thỏa mãn đẳng thức :54a-324b=-999996 hay không?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LT
1
AH
Akai Haruma
Giáo viên
21 tháng 7
Lời giải:
Không tìm được, vì:
$54a-324b=9(6a-36b)\vdots 9$, còn $-999996\not\vdots 9$
NT
0
TT
0
AM
27 tháng 6 2015
abcd là số có 4 chữ số =>abcd-d=abc0=10.abc Mà abcd-d=1(vô lí)
chỉ cần 1 cái sai là cả bài sai hết nên bạn chỉ cần chứng minh như vậy và kết luận
TH
0
NN
0
KV
27 tháng 12 2021
Ta có:
ƯCLN(312, 27) = 3
Mà 3 không là ước của 2020
\(\Rightarrow\) Không tồn tại cặp số nguyên (a; b) thỏa mãn 312a - 27b = 2020
NV
Nguyễn Việt Lâm
Giáo viên
22 tháng 7 2021
Không em, phải thỏa cả ĐKXĐ ban đầu chứ
Do đó \(x=-2\) \(\Rightarrow A=-1\) mới là GTNN của A
\(54a-324b=-999996\)
\(\Leftrightarrow a-6b=-\frac{166666}{9}\) (chia cả hai vế cho 54)
Vì \(a,b\in Z\) (theo đề bài), cho nên \(a-6b\in Z\), mà \(-\frac{166666}{9}\notin Z\)
\(\Rightarrow a,b\in\varnothing\)
Vậy không thể có số nguyên a, b nào thoả mãn đẳng thức trên.