K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2022

\(P=n^3+7n^2+25n+39=\left(n+3\right)\left(n^2+4n+13\right)\)

 Hiển nhiên \(\left\{{}\begin{matrix}n+3>1\\n^2+4n+13>1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n+3=p^a\\n^2+4n+13=p^b\end{matrix}\right.\) với \(b>a>0\)

\(\Rightarrow\left\{{}\begin{matrix}n+3⋮p\\n^2+4n+13⋮p\end{matrix}\right.\) \(\Rightarrow n^2+4n+13-\left(n+3\right)\left(n+1\right)⋮p\)

\(\Rightarrow10⋮p\Rightarrow\left[{}\begin{matrix}p=2\\p=5\end{matrix}\right.\)

- TH1: \(p=2\Rightarrow n+3=2^a\)

Do n nguyên dương \(\Rightarrow n+3\ge4\Rightarrow a\ge2\Rightarrow2^a⋮4\)

\(\Rightarrow n+3⋮4\Rightarrow n=4k+1\)

Đồng thời \(n^2+4n+13=2^b\), hiển nhiên \(b>2\Rightarrow n^2+4n+13⋮4\)

\(\Rightarrow\left(4k+1\right)^2+4\left(4k+1\right)+13⋮4\)

\(\Rightarrow4k\left(4k+6\right)+18⋮4\) (vô lý) 

\(\Rightarrow p=2\) không thỏa mãn

TH2: \(p=5\) \(\Rightarrow\left\{{}\begin{matrix}n+3=5^a\\n^2+4n+13=5^b\end{matrix}\right.\)  

\(\Rightarrow\left(n+1\right)\left(n+3\right)+10=5^b\)

\(\Rightarrow5^a\left(5^a-2\right)+10=5^b\)

\(\Rightarrow5^{a-1}\left(5^a-2\right)+2=5^{b-1}\)

- Với \(a=1\Rightarrow b=2\)

- Với \(a>1\Rightarrow\) vế trái chia 5 dư 2, vế phải chia hết cho 5

\(\Rightarrow\) Không tồn tại a;b nguyên thỏa mãn

Vậy \(a=1\Rightarrow n=5^1-3=2\)

\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)

Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp

nên n^3+3n^2+2n chia hết cho 3!=6

=>Để P nguyên thì 2n+1/1-2n nguyên

=>2n+1 chia hết cho 1-2n

=>2n+1 chia hết cho 2n-1

=>2n-1+2 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)

15 tháng 4 2019

Gọi n!+5=x3 (n,x thuộc N)

Xét n từ 0 đến 9: Chỉ có số 5 thỏa mãn điều kiện.

Xét n lớn hơn 10: Khi đó n! sẽ có ít nhất 2 thừa số 5 và 5 thừa số 2 => Sẽ có đuôi là 00 => n!+5 có đuôi là 05=> n!+5 chia hết cho 5=> x3 chia hết cho 5=> x chỉ có đuôi là 5 => x3 có đuôi là 25 hoặc 75=> không có số nào thỏa mãn đk.

Vậy n=5.

7 tháng 5 2017

 n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố. 
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7. 
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số. 
=> số duy nhất thỏa mãn là n = 6