Giải PT:
\(0,2-\left(5x-10\right)-0,1\left(10x-5\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0,2-\left(5x-10\right)-0,1\left(10x-5\right)=0\\ \Leftrightarrow0,2-5x+10-x+0,5=0\\\Leftrightarrow 10,7-6x=0\\\Leftrightarrow 10,7=6x\\ \Leftrightarrow x=\frac{107}{60}\)
Vậy nghiệm của phương trình trên là \(\frac{107}{60}\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
Lời giải:
1.
PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$
$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)
$\Leftrightarrow (t-4)(t+6)=0$
$\Rightarrow t-4=0$ hoặc $t+6=0$
Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$
$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$
Nếu $t+6=0$
$\Leftrightarrow x^2+5x+6=0$
$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$
2.
PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$
$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)
$\Leftrightarrow (t-1)(t+3)=0$
$\Rightarrow t-1=0$ hoặc $t+3=0$
Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$
$\Rightarrow x=0$ hoặc $x=4$
Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$
$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$
a/ Đặt (x^2 - 5x) = a thì ta có
a^2 + 10a + 24 = 0
<=> (a + 4)(a + 6) = 0
Làm nốt
b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680
<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680
<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680
Đặt x^2 - 11x + 28 = a thì ta có
a(a + 2) = 1680
<=> (a - 40)(a + 42) = 0
Làm nốt
1, \(x^4-19x^2-10x+8=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3-4x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)\left(x^2-5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\\x^2-5x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=-4\\x_2=-1\end{matrix}\right.\)
hoặc \(x^2-5x+2=0\)
\(\Rightarrow\Delta=17\left(CT:b^2-4ac\right)\)
\(\Rightarrow\left[{}\begin{matrix}x_3=\dfrac{5+\sqrt{17}}{2}\\x_4=\dfrac{5-\sqrt{17}}{2}\end{matrix}\right.\)
Vậy pt có 4 no là...........
Áp dụng cái này mà làm
\(a^3+b^3+c^3=\left(a+b+c\right)^3\)
\(\Leftrightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=0\)
\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
a) đặt \(\left(x^2+x\right)\)là \(y\)
ta có: \(3y^2-7y+4\)\(=0\)
<=>\(\left(3y-4\right)\left(y-1\right)=0\)
còn lại bạn tự xử nhé
PT 0,2-(5x-10)-0,1(10x-5)=0
<=> 0,2-5x+10-x+0,5=0
<=>10,7-6x=0
<=>6x=10,7
<=>6=107/60
<=>\(\orbr{\begin{cases}0,2-\left(5x-10\right)=0\\0,1\left(10x-5\right)=0\end{cases}}\)<=>\(\orbr{\begin{cases}5x-10=0,2-0\\10x-5=0,1-0\end{cases}}\)<=>\(\orbr{\begin{cases}5x-10=0,2\\10x-5=0,1\end{cases}}\)<=>\(\orbr{\begin{cases}5x=0,2+10\\10x=0,1+5\end{cases}}\)
<=>\(\orbr{\begin{cases}5x=10,2\\10x=5,1\end{cases}}\)<=>\(\orbr{\begin{cases}x=10,2:10\\x=5,1:5\end{cases}}\)<=>\(\orbr{\begin{cases}x=1,02\\x=1,02\end{cases}}\)
VậyxE{1,02;1,02}