K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

n.(n+3) - 3.(n+3) -13 chia hết cho n+3

mà n.(n+3) chia hết cho n+3

3.(n+3) chia hết cho n+3

suy ra -13 chia hết cho n+3

suy ra n + 3 thuộc {1; - 1; 13; -13}

n thuộc {-2; -4; 10; -16}

16 tháng 8 2021

a) 2n+1⋮n-3

2n-6+7⋮n-3

2n-6⋮n-3 ⇒7⋮n-3

n-3∈Ư(7)

Ư(7)={1;-1;7;-7}

⇒n∈{4;2;10;-4}

12 tháng 12 2021

\(\Leftrightarrow n+11\in\left\{1;-1;37;-37\right\}\)

hay \(n\in\left\{-10;-12;26;-48\right\}\)

12 tháng 12 2021

\(\Rightarrow n^2+11n-2n-22+37⋮n+11\\ \Rightarrow n\left(n+11\right)-2\left(n+11\right)+37⋮n+11\\ \Rightarrow n+11\inƯ\left(37\right)=\left\{-37;-1;1;37\right\}\\ \Rightarrow n\in\left\{-48;-12;-10;26\right\}\)

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

13 tháng 8 2018

\(n^2+5\)chứ

13 tháng 8 2018

n^2+5 nhé

26 tháng 2 2017

n2 + n3 - 13 chia hết cho n + 3

<=> n.(n+3) - 13 Chia hết cho n + 3

mà n.(n+3) chia hết cho n+3

=) 13 chia hết cho n+3

=) n+3 Thuộc Ư(13) = (-13 ;-1;1;13)

=) n thuộc (-16;-4;-;2;10 )

Vậy giá trị nhỏ nhất của N là - 16

\(n^2+3n-13\) \(⋮n+3\)

\(\Leftrightarrow n\left(n+3\right)-13⋮n+3\)

Mà n(n+3) chia hết cho n+3

\(\Rightarrow\left(n+3\right)\inƯ\left(13\right)=\left(-13;-1;1;13\right)\)

\(\Rightarrow n\in\left(-16;-4;-2;10\right)\)

Vậy \(GTNN\)của \(n=-16\)

17 tháng 12 2021

Bài 3: 

=>-3<x<2

8 tháng 11 2017