Chứng minh rằng tổng của 4 số nguyên tố bất kỳ lớn hơn 7 có kết quả là hợp số.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
20 tháng 10 2021
Câu 9:
Vì 2015;1020 đều chia hết cho 5
nên 2015+1020 là hợp số
7 tháng 10 2023
Câu 1:
\(25^{15}+10^{20}\)
\(=5^{30}+5^{20}\cdot2^{20}\)
\(=5^{20}\left(5^{10}+2^{20}\right)⋮5^{20}\)
=>Đây là hợp số
2 tháng 12 2023
Để chứng minh rằng trong 7 số nguyên tố lớn hơn 3 bất kỳ, luôn tồn tại hai số có hiệu chia hết cho 18, ta sẽ sử dụng một phương pháp đơn giản.
Chọn 7 số nguyên tố lớn hơn 3: Đặt các số này lần lượt là p₁, p₂, p₃, p₄, p₅, p₆, p₇.
Xét các số pᵢ (i = 1, 2, …, 7):
Ta biết rằng mỗi số nguyên tố lớn hơn 3 đều có dạng 6k ± 1 (với k là một số nguyên).Nếu pᵢ ≡ 1 (mod 6), thì pᵢ - 1 ≡ 0 (mod 6) và pᵢ + 1 ≡ 2 (mod 6).Nếu pᵢ ≡ 5 (mod 6), thì pᵢ - 1 ≡ 4 (mod 6) và pᵢ + 1 ≡ 0 (mod 6).Xét các hiệu của các số pᵢ:
Nếu có hai số pᵢ và pⱼ sao cho pᵢ - pⱼ = 18, thì hiệu này chia hết cho 18.Xét trường hợp:Nếu pᵢ ≡ 1 (mod 6) và pⱼ ≡ 5 (mod 6), thì pᵢ - pⱼ = 18.Nếu pᵢ ≡ 5 (mod 6) và pⱼ ≡ 1 (mod 6), cũng có pᵢ - pⱼ = 18.Vậy, luôn tồn tại hai số nguyên tố lớn hơn 3 trong 7 số đã cho có hiệu chia hết cho 18. 🌟
Do các số nguyên tố lớn hơn 7 đều là số lẻ
\(\Rightarrow\) Tổng của 4 số nguyên tố lớn hơn 7 là số chẵn nên chia hết cho 2
\(\Rightarrow\) Tổng của 4 số nguyên tố lớn hơn 7 là hợp số