tìm gtln của biêu thức A=(x+5)2 - |x-y+1|+2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lớp 7 nhẩy lên lớp 9
\(\frac{1}{A}=\left(x-\frac{3}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
\(\hept{\begin{cases}A\le2\\A\left(\frac{3}{2}\right)=2\end{cases}}\) \(\Rightarrow x=\frac{3}{2}\)
(x^2+2)^2>=4
3|x-y+1|>=0
=>-(x^2+2)^2-3|x-y+1|<=-4
=>A<=-4+2020=2016
Dấu = xảy ra khi x=0 và x-y+1=0
=>x=0 và y=1
Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)
Dấu "=" xảy ra <=> x + 1 = 0
=> x = -1
Vậy GTLN của A là 2020 khi x = -1
b) Để C đạt GTLN
=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất
=> (x - 3)2 nhỏ nhất
=> (x - 3)2 = 1
=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Nếu x = 4 => C = 6
Vậy GTLN của C là 6 khi x = 4 hoặc x = 2
A = 2020 - ( x + 1 )2022
-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxA = 2020 <=> x = -1
C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)
Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN
( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1
=> Min(*) = 1 <=> x - 3 = 0 => x = 3
=> MaxC = 5 <=> x = 3
\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)
\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)
\(\Leftrightarrow2\left(x+2y\right)=0\)
\(\Leftrightarrow x=-2y\)
\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)
\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)
\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)
a) \(\left(x-2\right)^2+2019\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)
Dấu '=' xảy ra khi
\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2
b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\left(y-2\right)^2\ge0\forall y\)
Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2
c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)
Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)
\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)
Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)
\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)
Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)
\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2
d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)
Ta có: \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow-\left|x-1\right|\le0\forall x\)
Ta có: \(\left(2y-1\right)^2\ge0\forall y\)
\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)
Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)
a. Vì \(\left|x-1\right|\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2\ge0\forall x;y\)
\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2+2020\ge2020\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy Bmin = 2020 <=> x = 1 và y = - 2
b. Vì \(x^2\ge0\forall x\Rightarrow-x^2\le0\)
\(\Rightarrow-x^2+2019\le2019\)
Dấu "=" xảy ra \(\Leftrightarrow-x^2=0\Leftrightarrow x=0\)
Vậy Pmax = 2019 <=> x = 0
Vì \(\left|y-1\right|\ge0\forall y;\left(t+2\right)^4\ge0\forall t\)
\(\Rightarrow-\left|y-1\right|-\left|t+2\right|^4\le0\forall y;t\)
\(\Rightarrow-\left|y-1\right|-\left|t-2\right|^4+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|y-1\right|=0\\\left|t+2\right|^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y-1=0\\t+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=1\\t=-2\end{cases}}\)
Vậy Qmax <=> y = 1 và t = 2