K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Lớp 7 nhẩy lên lớp 9

\(\frac{1}{A}=\left(x-\frac{3}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

\(\hept{\begin{cases}A\le2\\A\left(\frac{3}{2}\right)=2\end{cases}}\) \(\Rightarrow x=\frac{3}{2}\)

23 tháng 11 2022

(x^2+2)^2>=4

3|x-y+1|>=0

=>-(x^2+2)^2-3|x-y+1|<=-4

=>A<=-4+2020=2016

Dấu = xảy ra khi x=0 và x-y+1=0

=>x=0 và y=1

27 tháng 8 2020

Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)

Dấu "=" xảy ra <=> x + 1 = 0

=> x = -1

Vậy GTLN của A là 2020 khi x = -1

b) Để C đạt GTLN 

=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất

=> (x - 3)2 nhỏ nhất 

=> (x - 3)2 = 1

=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

Nếu x = 4  => C = 6

Vậy GTLN của C là 6 khi x = 4 hoặc x = 2

27 tháng 8 2020

A = 2020 - ( x + 1 )2022

-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020 

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MaxA = 2020 <=> x =  -1

C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)

Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN

( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1 

=> Min(*) = 1 <=> x - 3 = 0 => x = 3

=> MaxC = 5 <=> x = 3

NV
6 tháng 2 2021

\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)

\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)

\(\Leftrightarrow2\left(x+2y\right)=0\)

\(\Leftrightarrow x=-2y\)

\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)

\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)

\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)

6 tháng 2 2021

yeu

a) \(\left(x-2\right)^2+2019\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2

b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2

c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)

Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)

\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)

Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)

\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)

Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)

\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2

d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow-\left|x-1\right|\le0\forall x\)

Ta có: \(\left(2y-1\right)^2\ge0\forall y\)

\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)

Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)

5 tháng 8 2020

a. Vì \(\left|x-1\right|\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2\ge0\forall x;y\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2+2020\ge2020\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin = 2020 <=> x = 1 và y = - 2

b. Vì \(x^2\ge0\forall x\Rightarrow-x^2\le0\)

\(\Rightarrow-x^2+2019\le2019\)

Dấu "=" xảy ra \(\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy Pmax = 2019 <=> x = 0

Vì \(\left|y-1\right|\ge0\forall y;\left(t+2\right)^4\ge0\forall t\)

\(\Rightarrow-\left|y-1\right|-\left|t+2\right|^4\le0\forall y;t\)

\(\Rightarrow-\left|y-1\right|-\left|t-2\right|^4+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|y-1\right|=0\\\left|t+2\right|^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y-1=0\\t+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=1\\t=-2\end{cases}}\)

Vậy Qmax <=> y = 1 và t = 2

6 tháng 8 2020

Cảm ơn bạn Death Note nha