K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

\(M=3+3^2+3^3+...+3^{100}\)

\(2M=3^2+3^3+...+3^{101}\)

\(2M-M=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(M=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\)

\(M=3^{101}-3\)

21 tháng 10 2021

a) Ta có :

M = 3 + 32 + 33 + ... + 3100

=> 3M = 32 + 33 + 34 + ... + 3101

=> 3M - M = ( 32 + 33 + 34 + ... + 3101 ) - ( 3 + 32 + 33 + ... + 3100 )

=> 2M = 3101 - 3 

=> M = \(\frac{3^{101}-3}{2}\)

b) Ta có :

M = 3 + 32 + 33 + ... + 3100

=> 3M = 32 + 33 + 34 + ... + 3101

=> 3M - M = ( 32 + 33 + 34 + ... + 3101 ) - ( 3 + 32 + 33 + ... + 3100 )

=> 2M = 3101 - 3 

=> 2M + 3 = 3101 - 3 + 3 = 3101

26 tháng 8 2023

\(A=2^1+2^2+2^3+...+2^{10}\)

\(\Rightarrow2A=2\cdot\left(2+2^2+2^3+...+2^{10}\right)\)

\(\Rightarrow2A=2^2+2^3+...+2^{11}\)

\(\Rightarrow2A-A=\left(2^2+2^3+...+2^{11}\right)-\left(2+2^2+...2^{10}\right)\)

\(\Rightarrow A=2^{11}-2\) 

\(B=3^1+3^2+...+3^{100}\)

\(\Rightarrow3B=3\cdot\left(3+3^2+...+3^{100}\right)\)

\(\Rightarrow3B=3^2+3^3+...+3^{101}\)

\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow2B=3^{101}-3\)

\(\Rightarrow B=\dfrac{3^{101}-3}{2}\)

26 tháng 8 2023

phần B thiếu 3 mũ 3 ak

 

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

Bài 2: 

a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)

\(=7^3+2\cdot7^2=441\)

31 tháng 7 2016

Bài 1: a)  \(M=1+5+5^2+...+5^{100}\)

\(5M=5+5^2+5^3+...+5^{101}\)

\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)

\(4M=5^{101}-1\)

\(M=\frac{5^{101}-1}{4}\)

b) \(N=2+2^2+...+2^{100}\)

\(2N=2^2+2^3+...+2^{101}\)

\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(N=2^{101}-2\)

31 tháng 7 2016

Bài 2:

a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\) 

\(32^{16}=\left(2^5\right)^{16}=2^{80}\)

Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)

9 tháng 8 2023

a) \(A=2+2^2+2^3+...+2^{2017}\)

\(A=2\left(1+2^1+2^2+...+2^{2016}\right)\)

\(A=2.\dfrac{2^{2016+1}-1}{2-1}\)

\(A=2.\left(2^{2017}-1\right)=2^{2018}-2\)

Câu b bạn xem lại đề

9 tháng 8 2023

a)

26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.