Với a \(\in\) Z. Hãy so sánh a2 và 2a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với \(a\in Z\)
Xét 3 trường hợp
Khi a< 0 thì a2 > 2a ( 1 )
Khi a = 0, 1 , 1 thì a2 = 2a ( 2 )
Khi a> 2 thì a2 > 2a ( 3 )
Từ ( 1) , ( 2 ) , ( 3 ) \(\Rightarrow a^2\ge2a\)
Có 3 trường hợp:
1) a2 > 2a (VD: 32 > 2.3)
2) a2 < 2a (VD:12 < 2.1)
3) a2 = 2a (VD:02 = 2.0)
TH1: a Là số âm ta có:
\(a^2\ge0\)với mọi a
\(2a< 0\)với mọi a
\(\Rightarrow a^2>2a\)
TH2: \(a=1\)
\(\Rightarrow a^2< 2a\left(1< 2\right)\)
TH3:\(a=0;a=2\)
\(\Rightarrow a^2=2a\left(4=4hoặc0=0\right)\)
TH4:\(a\ge3\)
\(\Rightarrow a^2>2a\)
VẬY:\(a^2>2a\)Khi \(a< 0;a\ge3\)
\(a^2=2a\)Khi \(a=0;a=2\)
\(a^2< 2a\)Khi \(a=1\)
Xét hiệu:
a2 + b2 + c2 - ab - bc - ca
= 1 2 (2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca)
= 1 2 [(a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2)]
= 1 2 [(a - b)2 + (b - c)2 + (c - a)2] ≥ 0
(vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c)
Nên a2 + b2 + c2 ≥ ab + bc + ca.
Dấu “=” xảy ra khi a = b = c.
Đáp án cần chọn là: B
Xét hiệu:
3(a2 + b2 + c2) - (a + b + c)2
= 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ac
= 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac
= (a - b)2 + (b - c)2 + (c - a)2 ≥ 0
(vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c
Nên 3(a2 + b2 + c2) ≥ (a + b + c)2.
Đáp án cần chọn là: C
\(a< b\)
\(\Leftrightarrow2a< 2b\)
\(a< b\)
\(\Leftrightarrow a+a< b+a\)
\(\Leftrightarrow2a< a+b\)
\(a< b\)
\(\Leftrightarrow-1a>-1b\)
\(\Leftrightarrow-a>-b\)
+ a < b ⇒ 2a < 2b (nhân cả hai vế với 2 > 0, BĐT không đổi chiều).
+ a < b ⇒ a + a < b + a (Cộng cả hai vế với a)
hay 2a < a + b.
+ a < b ⇒ (-1).a > (-1).b (Nhân cả hai vế với -1 < 0, BĐT đổi chiều).
hay –a > -b.
Có đủ 3 trường hợp:
+) a2 = 2a khi a = 0 hoặc 2
Giải cụ thể:
a2 = 2a => a2 - 2a = 0
=> a(a-2) = 0 => a = 0;2
+) a2 > 2a khi a > 2 hoặc a < 0
+) a2 < 2a khi 0 < a < 2