\(\frac{28}{x\left(x+2\right)}\)-\(\frac{28}{x}\)= 0,7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
b) (4x -1)2 = (1-4x)4 (1)
Vì (1 - 4x) = (4x - 1)
\(\Rightarrow\)(1 - 4x)4 = [ -( 4x -1)4 ]
Vì (1-4x)4 = ( 4x - 1)4
Do đó (1) có dạng :
(4x - 1)2 = (4x - 1)2
Đặt 4x - 1 = x, ta có :
x2 = x4
x2 ( 1 - x2 ) = 0
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\x^2=\orbr{\begin{cases}1^2\\\left(-1\right)^2\end{cases}}\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\orbr{\begin{cases}x=1\\x=-1\end{cases}}\end{cases}}\)
Thay x = 4x -1 = 0
x = \(\frac{1}{4}\)
- x = 1 \(\Leftrightarrow\) 4x - 1 = 1
x = \(\frac{1}{2}\)
- x = -1 \(\Leftrightarrow\) 4x -1 = -1
x = 0
Vậy x = \(\frac{1}{2}\) hoặc x = 0
ĐK: \(\left\{{}\begin{matrix}x\ne0\\x\ne-2\end{matrix}\right.\)
\(\frac{28}{x\left(x+2\right)}-\frac{28}{x}=\frac{7}{10}\) \(\Leftrightarrow\frac{1}{x\left(x+2\right)}-\frac{x+2}{x\left(x+2\right)}=\frac{1}{40}\)
\(\Leftrightarrow\frac{-x-1}{x^2+2x}=\frac{1}{40}\Leftrightarrow x^2+2x=-40x-40\)
\(\Leftrightarrow x^2+42x+40=0\Leftrightarrow x=-21\pm\sqrt{401}\) (tm)
Vậy...