Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\frac{21}{x^2-9}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+2}{x+3}\)
\(B=\frac{2x^2-5x+12}{x^2-9}\cdot\frac{x+3}{x+2}\)
\(B=\frac{2x^2-5x-12}{\left(x-3\right)\left(x+2\right)}\)
\(B=\frac{2x^2-5x+12}{x^2-x-6}\)
Thik thì tách tiếp nha
a) \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)=x^2-2x+1-x^2+4=5-2x\)
mình nghĩ là câu b bạn ghi đề sai vì như thế không có hằng đẳng thức nhé
b)\(\left(x^2+\frac{1}{3}x+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3=x^3-\frac{1}{27}-x^3+\frac{1}{27}+x^2-\frac{1}{3}x=x^2-\frac{1}{3}x\)
b,\(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)
\(=\)\(\left(x-\frac{1}{3}\right)\left[\left(x^2+\frac{1}{x}+\frac{1}{9}\right)-\left(x-\frac{1}{3}\right)^2\right]\)
\(=\)\(\left(x-\frac{1}{3}\right)\left(x^2+\frac{1}{x}+\frac{1}{9}-x^2+\frac{2}{3}x-\frac{1}{9}\right)\)
\(=\left(x-\frac{1}{3}\right)\left(\frac{1}{x}+\frac{2}{3}x\right)\) \(=1+\frac{2}{3}x^2-\frac{1}{3x}-\frac{2}{9}x\)
đkxd: \(x\ne\left\{\pm3\right\}\)
a) B= \(\frac{21+\left(x-4\right)\left(x+3\right)-\left(x+1\right)\left(x-3\right)}{x^2-9}:\left(\frac{x+3-1}{x+3}\right)\)
=\(\frac{21+x^2-x-12-x^2+2x+3}{x^2-9}.\frac{x+3}{x+2}\)
=\(\frac{x+12}{x-3}\)
b)|2x+1|=5
<=> \(\left[\begin{array}{nghiempt}2x+1=-5\\2x+1=5\end{array}\right.\)<=> x=-3 hoặc x=2
với x=-3 thì B=\(\frac{-3}{2}\)
với x=2 thì B=-14
\(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}+\frac{x-1}{3+x}\right)\div\left(1-\frac{1}{x+3}\right)\)
\(B=\left(\frac{21}{x^2-9}+\frac{x-4}{x-3}+\frac{x-1}{x+3}\right)\div\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)
\(B=\left(\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right)\div\frac{x+2}{x+3}\)
\(B=\left(\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-x-12}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-4x+3}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x+3}{x+2}\)
\(B=\left(\frac{21+x^2-x-12+x^2-4x+3}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x+3}{x+2}\)
\(B=\frac{2x^2-5x+12}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{\left(x+2\right)}\)
\(B=\frac{2x^2-5x+12}{\left(x-3\right)\left(x+2\right)}\)
\(B=\frac{2x^2-5x+12}{x^2-x-6}\)
Đến đây là chịu ạ :(
a) A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)
Tại x = \(\frac{1}{2}\)thì:
A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)