Cho hình vuông ABCD có cạnh bằng 6cm. Trên tia đối của tia AD lấy điểm E sao cho AE=2cm, EC cắt AB tại H. Tính EC và EH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADM và ΔCDB có
DA=DC
góc ADM=góc CDB
DM=DB
=>ΔADM=ΔCDB
=>góc DAM=góc DCB
=>AM//BC
Xét tứ giác ACBN có
E là trung điểm chung của AB và CN
=>ACBN là hình bình hành
=>AN//BC
=>M,A,N thẳng hàng
b: BM+CN=2BD+2CE=2*3/2(BG+CG)=3(BG+CG)>3BC
a: Xét ΔADM và ΔCDB có
DA=DC
góc ADM=góc CDB
DM=DB
=>ΔADM=ΔCDB
=>góc DAM=góc DCB
=>AM//BC
Xét tứ giác ACBN có
E là trung điểm chung của AB và CN
=>ACBN là hình bình hành
=>AN//BC
=>M,A,N thẳng hàng
b: BM+CN=2BD+2CE=2*3/2(BG+CG)=3(BG+CG)>3BC
c: Gọi BN cắt CM tại I
CB//MN
=>IB/IN=IC/IM=BC/MN=1/2
=>B là trung điểm của IN, C là trung điểm của IM
G là trọng tâm của ΔIMN và A là trung điểm của MN
nên I,G,A thẳng hàng
=>ĐPCM
trên tia đối của AB hay sao, trên cạnh AB biết vẽ về phía nào
a: Xét ΔBAD và ΔCAD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
* Theo giả thiết ta có: ΔACD và ΔABC đều
Ta có:
ΔABE\(\approx\)CFB(\(\approx\)ΔDFE)
=>AE/BC=AB/CF
<=>AE/AC=AC/CF
Mà ^CAE = ^ACF(=120o)
=>ΔACE\(\approx\)ΔCFA(c.g.c)
* Ta có:
^CAF + ^FAB = ^CAB= 60o
Mà ^FAB = ^CFA(AB//CF,slt)
và ^CFA = ^ACE(ΔACE\(\approx\)ΔCFA)
=> ^CAF + ^ACE = 60o
=> ^AOC = 120o
=> ^EOF = 120o (đđ)
Nguồn : Mạng
áp dụng định lý pitago vào tam giac AEC
\(EC=\sqrt{AC^2+AE^2}\)
\(=\sqrt{8^2+6^2}\)
\(=10\)
Vậy \(EC=10\)
còn EH bạn?