K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(x^2+\frac{9x^3}{\left(x+3\right)^2}=40\left(x\ne-3\right)\)

\(\Leftrightarrow x^2+\left(x+3\right)^2+9x^2=40\left(x+3\right)^2\)

\(\Leftrightarrow x^4+6x^3+18x^2=40x^2+240x+360\)

\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)

\(\Leftrightarrow\left(x^3+10x+30\right)\left(x-6\right)\left(x+2\right)=0\)

Khi x-6=0  hoặc x+2=0 <=> x=6 hoặc x=-2

Khi \(x^3+10x+30=0\)

\(x=\frac{-10+2\sqrt{5}}{2};x=\frac{-10-2\sqrt{5}}{2}\)

Hơi khó hiểu 1 chút, bạn cố gắng nhé

10 tháng 3 2020

\(x^2+\frac{9x^2}{\left(x+3\right)^2}=40^{\left(1\right)}\)

\(ĐKXĐ:x\ne-3\)

\(\left(1\right)\Leftrightarrow x^2-2.x.\frac{3x}{x+3}+\frac{\left(3x\right)^2}{\left(x+3\right)^2}+\frac{6x^2}{x+3}=40\)

\(\Leftrightarrow\left(x-\frac{3x}{x+3}\right)^2+\frac{6x^2}{x+3}=40\)

\(\Leftrightarrow\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}=40\)

Đặt \(t=\frac{x^2}{x+3}\)ta có 

\(t^2+6t=40\)

\(\Leftrightarrow\left(t-4\right)\left(t+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-4=0\\t+10=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-10\end{cases}}\)

+) Với t =4 ta có 

\(\frac{x^2}{x+3}=4\)

\(\Rightarrow4\left(x+3\right)=x^2\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\left(tm\right)\\x=-2\left(tm\right)\end{cases}}\)

+) với x=-10 ta có 

\(\frac{x^2}{x+3}=-10\)

\(\Rightarrow-10\left(x+3\right)=x^2\)

\(\Leftrightarrow x^2+10x+30=0\)

\(\Leftrightarrow\left(x+5\right)^2=-5\)

Phương trình vô nghiệm 

Vậy............................

25 tháng 7 2016

Tìm nhẩm nghiệm rồi nhân liên hợp

14 tháng 8 2017

dễ mà bn

10 tháng 3 2020

\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)

\(ĐKXĐ:x\ne\pm2\)

Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)

=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)

\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)

=>  \(b=0;a=0\)

Bạn cùng trường :">

10 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

Đặt \(\frac{x+2}{x-3}=a;\frac{x-2}{x+3}=b\)

Ta có:

\(pt\Leftrightarrow3a^2+8ab=3b^2\)

\(\Leftrightarrow3a^2+8ab-3b^2=0\)

\(\Leftrightarrow\left(3a-b\right)\left(3b+a\right)=0\)

\(\Leftrightarrow3a=b;3b=-a\)

Đến đây bạn thay vào làm nhá,giải như pt bậc 2 thôi

12 tháng 9 2018

d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)

Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)

Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)

\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)

Đến đây bạn có thể giải ra tìm x đc

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>