K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+ac+bc+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\Rightarrow c=2019\\b+c=0\Rightarrow a=2019\\a+c=0\Rightarrow b=2019\end{matrix}\right.\)

9 tháng 11 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2019}\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)=abc\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+b+c\right)\left(a+c\right)+ca\left(a+c\right)=0\)

\(\Leftrightarrow\left(ab+b^2+bc+ac\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Suy ra a + b = 0 hoặc b + c = 0 hoặc a + c = 0

Mà a + b + c = 2019 nên phải có 1 trong ba số a,b,c bằng 2019 (đpcm)

7 tháng 8 2020

Vào trang cá nhân của mình đi, có cái này hay lắm, nhớ kb vs mình nha

26 tháng 8 2018

Câu hỏi của hanhungquan - Toán lớp 8 - Học toán với OnlineMath tương tự

30 tháng 8 2018

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2019}\Leftrightarrow2019\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Mà \(a+b+c=2019\)

\(\Rightarrow a=2019\)hoặc \(b=2019\)hoặc \(c=2019\)

9 tháng 8 2019

EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath

Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b 

=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)

và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)

Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

30 tháng 10 2018

\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)

\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)

=>a=-b hoặc c=b hoặc a=c

không mất tính tổng quát, giả sử a=-b, ta có:

\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)

tương tư với các trường hợp khác ta cũng có P=1

Vậy P=1

NV
11 tháng 3 2019

\(\frac{1}{a}+\frac{1}{c}=\frac{1}{a-b+c}+\frac{1}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{a+c}{b\left(a-b+c\right)}\)

\(\Rightarrow\left[{}\begin{matrix}a+c=0\\ac=b\left(a-b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac=b\left(a-b\right)+bc\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac-bc-b\left(a-b\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\\left(c-b\right)\left(a-b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\a=b\left(l\right)\\b=c\left(l\right)\end{matrix}\right.\) do \(a< b< c\) \(\Rightarrow a=-c\)

\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}}-\frac{1}{b}-\frac{1}{a^{2019}}=\frac{-1}{b}\)

\(\frac{1}{a^{2019}-b+c^{2019}}=\frac{1}{a^{2019}-b-c^{2019}}=\frac{-1}{b}\)

\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}-b+c^{2019}}\)

9 tháng 4 2020

\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)

\(=> (a+b+c)(1/a +1/b+1/c) = 1\)

\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)

\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)

\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)

\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)

\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)

\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)

\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)

\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)

\(<=> (b+c)[a(a+b) + c(a+b)] =0\)

\(<=> (b+c)(a+b)(a+c) =0 \)

<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)

\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)

Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)

23 tháng 9 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)  hinh nhu theo co dieu kien a,b,c  ko dong thoi = 0

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=>  \(\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)

<=> \(\left(a+b\right)\left(ac+bc+c^2\right)=-ab\left(a+b\right)\)

<=> \(\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)

<=> \(\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

<=> \(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

<=> a+b=0 hoac a+c=0 hoac b+c=0

do khi luy thua a,b,c len cach so mu le la 27,41,2019 thi a,b,c ko doi dau nen \(a^{27}+b^{27}=0.hoac.b^{41}+c^{41}=0.hoac.c^{2019}+a^{2019}=0\)

P = 0 

Vay P = 0 

Study well

23 tháng 9 2019

Ta có : \(\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}-\frac{1}{a}\Rightarrow\frac{b+c}{bc}=\frac{a-a-b-c}{a^2+ab+ac}\)

\(\Leftrightarrow\frac{b+c}{bc}=\frac{-b-c}{a^2+ab+ac}\Leftrightarrow\left(b+c\right)\left(a^2+ab+ac\right)=-\left(b+c\right)bc\)

\(\left(b+c\right)\left(a^2+ab+ac\right)+\left(b+c\right)bc=0\)

\(\Rightarrow\left(b+c\right)\left(a^2+ab+ac+bc\right)=0\)

\(\Leftrightarrow\left(b+c\right)[\left(a+b\right)a+c\left(a+b\right)]=0\)

\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\c^{2019}+a^{2019}=0\end{cases}}\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\a^{2019}+c^{2019}=0\end{cases}}\end{cases}}}\)

14 tháng 11 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\Leftrightarrow c\left(a+b+c\right)\left(a+b\right)=-ab\left(a+b\right)\)

\(\Leftrightarrow\left(ac+bc+c^2\right)\left(a+b\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> a=-b hoặc b=-c hoặc c=-a

không mất tính tổng quát ,giả sử a=-b, ta có:

\(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{-b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\left(1\right)\)

\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\left(2\right)\)

Từ  (1) và (2) => đpcm

Tương tự với 2 trường hợp còn lại ta cũng có đpcm