Cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt AC tại D.kẻ DK vuông góc với BC
1.CM: DA=DK
2.kẻ AH vuông góc với BC. CM: tia AK là phân giác của góc HAC
Giúp mình với ! Cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có tam giác ABC vuông tại A
=>\(BC^2=AC^2+AB^2\) ( định lí Pitago)
=>\(BC^2=8^2+6^2=100\)
=> BC=10 (cm)
b) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)
=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)
=> BA=BK ( 2 cạnh tương ứng)
Vạy tam giác ABK cân tại B
c) Nối D với K, ta có tam giác DKE vuông tại E
Theo câu b, ta có tam giác ABE= tam giác KBE
=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)
Xét tam giác vuông DEA và tam giác vuông DEK có
Cạnh DE chung
EA=KE
=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)
=> Góc DAE=góc DKE (2)
Từ (1) và (2) =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ
=> Góc DKB= 90 độ
Vậy DK vuông góc với BC
d)
Có \(DK⊥BC,AH⊥BC\) =>DK//AB
=> góc DKE= góc EAH (1)
Có tam giác DEA=tam giác DEK
=> góc DAE= góc DKE (2)
Từ (1) và (2) => góc EAH= góc DAE hay góc CAK= góc KAH
Vậy AK là phân giác của góc HAC
a: \(BC=\sqrt{4^2+5^2}=\sqrt{41}\left(cm\right)\)
b: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)
c: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)
\(\widehat{KAD}+\widehat{BAD}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên AD là tia phân giác của góc HAC
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: AH=AK
DH=DK
=>AD là trung trực của HK
c: Gọi M là giao của DK với AH
Xét ΔAMC có
MK,CH là đường cao
MK cắt CH tại D
=>D là trực tâm
=>AD vuông góc MC
mà AD vuông góc CE
nên C,M,E thẳng hàng
=>AH,KD,CE đồng quy tại M
a) xét ABE vuông tại E và KBE vuông tại E
có góc ABE =KBE(gt)
BE chug
=> ABE=KBE ( ch -gn)
=> AB=KB( cạnh t/ư)
=> ABK cân tại B
b) xét ABD và KBD
có AB=KB
ABD=KBD
BD chung
=> ABD = KBD( cgc)
=> BAD = BKD
mà BAD = 90 độ
=> BKD =90 độ
hay DK vuông góc BC tại K
a) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
DBA=DBK hay EBA=EBA ( vì BD là phân giác của góc ABC)
=>\(\Delta ABE=\Delta KBE\) ( cạnh góc vuông- góc nhọn)
=>BA=BK
Vậy tam giác ABK cân tại B
b) Xét \(\Delta ABD\) và \(\Delta KBD\) có
AB=BK
ABD=KBD
Cạnh BD chung
=> \(\Delta ABD=\Delta KBD\left(c.g.c\right)\)
=> DKB=DAB=90 độ
Vậy \(DK⊥BC\)
c)d)
Xét \(\Delta ABI\) và \(\Delta KBI\) có
BA=BK
ABI=FBI
Cạnh BF chung
=> \(\Delta ABI=\Delta KBI\left(c.g.c\right)\)
=> IA=IK
Ta có DA=DK, IA=IK hay ID là đường trung trực của AK
=>AE=EK
Có \(DK⊥BC,AH⊥BC\) => DK//AH
=>DKE=EAI( 2 góc so le trong)
Xét tam giác vuông DKE và tam giác vuông EAI có
AE=EK
DKE=EAI
=> \(\Delta DKE=\Delta EAI\)(cạnh góc vuông- góc nhọn)
=>DK=AI
Mà DK=DA
=>AI=AD
Xét tam giác vuông DAE và tam giác vuông IAE có
DA=DI
Cạnh AE chung
=> \(\Delta DAE=\Delta IAE\)( cạnh huyền- cạnh góc vuông)
=>DAE=EAI hay góc CAK= góc KAH
Vậy AK là phân giác của HAC
Xét tam giác vuông IKE và tam giác vuông EAD có
AE=EK
KEI=AED( 2 góc đối đỉnh)
=>\(\Delta IKE=\Delta EAD\)( cạnh góc vuông- góc nhọn)
=>IKE=EAD
Mà IKE và EAD là 2 góc so le trong =>IK//AC
a)Xét 2 tam giác ABD và tam giác KBD lần lượt vuông tại A,K có:
{DBchungABDˆ=KBDˆ{DBchungABD^=KBD^
⇒ΔABD=ΔKBD⇒ΔABD=ΔKBD(cạnh huyền-góc nhọn kề)
⇒AD=DK(đpcm)⇒AD=DK(đpcm)
b)Từ câu a) suy ra tam giác ADK cân tại D
⇒DAKˆ=DKAˆ(1)⇒DAK^=DKA^(1)
Mà DK⊥BC;AH⊥BC⇒DK//AH⇒DKAˆ=KAHˆ(2)DK⊥BC;AH⊥BC⇒DK//AH⇒DKA^=KAH^(2)
Từ(1) và (2)
⇒DAKˆ=HAKˆ⇒DAK^=HAK^ hay CAKˆ=HAKˆCAK^=HAK^
Suy ra AK là phân giác của HACˆ
# mui #
Xét \(\Delta ABD\left(\widehat{A}=90^0\right)\)và \(\Delta KBD\left(\widehat{K}=90^0\right)\)có:
DB là cạnh chung
\(\widehat{ABD}=\widehat{KBD}\)( BD là tia phân giác góc B )
=> \(\Delta ABD=\Delta KBD\left(ch.gn\right)\)
=> \(DA=DK\)( 2 cạnh tương ứng )
=> Tam giác ADK cân tại D
b) Vì tam giác ADK cân tại D ( cmt )
=> \(\widehat{DAK}=\widehat{DKA}\)( tính chất tam giác cân ) (1)
Mà \(DK\perp BC,AH\perp BC\)=> \(DK//AH\)( từ vuông góc đến song song ) => \(\widehat{DKA}=\widehat{KAH}\)(2)
Từ (1) và (2)
=> \(\widehat{DAK}=\widehat{HAK}\)hay \(\widehat{CAK}=\widehat{HAK}\)
=> AK là tia phân giác của \(\widehat{HAC}\left(đpcm\right)\)