tìm x
3x + 3x+2 = 7290
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^x\left(1+3^2\right)=7290\\ \Rightarrow3^x.10=7290\\ \Rightarrow3^x=729=3^6\\ \Rightarrow x=6\)
ngôlãmtân
\(3^{3x}+3^{3x+2}=7290\)
\(3^{3x}+3^{3x}.3^2=7290\)
\(3^{3x}.\left(1+3^2\right)=7290\)
\(3^{3x}.\left(1+9\right)=7290\)
\(3^{3x}.10=7290\)
\(3^{3x}=\frac{7290}{10}\)
\(3^{3x}=729\)
\(3^{3x}=3^6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
vậy \(x=2\)
P/S: đừng ai copy bài mình nhé
Lời giải:
a.
ƯCLN $ =5^2=25$
BCNN $=3.5^2.7=525$
b.
ƯCLN $=3$
BCLNN $=2^2.3^2.5.7.11=13860$
A) \(\frac{2}{3}-\left(\frac{3}{4}-x\right)=\frac{1}{3}\)
\(\Rightarrow\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}\)
\(\Rightarrow\frac{3}{4}-x=\frac{1}{3}\)
\(\Rightarrow x=\frac{3}{4}-\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{12}\)
Vậy \(x=\frac{5}{12}\)
B) \(3^{3x}+3^{3x+2}=7290\)
\(\Rightarrow3^{3x}+3^{3x}\times3^2=7290\)
\(\Rightarrow3^{3x}\times\left(1+3^2\right)=7290\)
\(\Rightarrow3^{3x}\times10=7290\)
\(\Rightarrow3^{3x}=7290:10\)
\(\Rightarrow3^{3x}=729\)
\(\Rightarrow3^{3x}=3^6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=6:3\)
\(\Rightarrow x=2\)
Vậy x = 2
_Chúc bạn học tốt_
\(\frac{2}{3}-\left(\frac{3}{4}-x\right)=\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{1}{3}\)
\(x=\frac{3}{4}-\frac{1}{3}\)
\(x=\frac{5}{12}\)
\(3^{3x}+3^{3x+2}=7290\)
\(3^{3x}\left(1+3^2\right)=7290\)
\(3^{3x}\cdot10=7290\)
\(3^{3x}=729\)
\(3^{3x}=3^6\)
\(\Rightarrow3x=6\)
\(x=2\)
Không cần k nha ! Học tốt ....
Sửa đề bài 1 : k => x P/s : đề sai r :))
\(A=\left(3-2x\right)3x^2-8+\left(2x+5\right)\left(3x-2\right)-20x\)
\(=9x^2-6x^3-8+6x^2-4x+15x-10-20x=15x^2-6x^3-18-9x\)
Vậy biểu thức phụ thuộc biến x
\(B=\left(3-5x\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x+33-10x^2-55x-6x^2-14x-9x-21=-72x+12-16x^2\)
Vậy biểu thức phụ thuộc biến x
Bài 2 :
a, \(2x\left(x-1\right)-x^2+6=0\Leftrightarrow2x^2-2x-x^2+6=0\)
\(\Leftrightarrow x^2-2x+6=0\)( vô nghiệm )
b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^2-9-x\left(x^2-4\right)=15\Leftrightarrow x^2-9-x^3+12=15\)
\(\Leftrightarrow-x^3+x^2-12=0\Leftrightarrow x=2\)
\(3^x+3^{x+2}=7290\)
\(3^x+3^x.3^2=7290\)
\(3^x.\left(1+9\right)=7290\)
\(3^x.10=7290\)
\(\Rightarrow3^x=729\)
\(\Rightarrow x=6\)
\(3^x+3^{x+2}=7290\Rightarrow3^x.\left(1+3^2\right)=7290\Rightarrow3^x=729=3^6\Rightarrow x=6\)
\(3^x+3^{x+2}=7290\)
\(\Leftrightarrow3^x\left(1+3^2\right)=7290\Leftrightarrow3^x.10=7290\)
\(\Leftrightarrow3^x=729\Leftrightarrow3^x=3^6\Leftrightarrow x=6\)