84:4+35:3^7 + 2017^0
giúp mình vs ạ! Thanks you
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x - 1)³ - 8x + 4 = 0
(2x - 1)³ - 4x(2x - 1) = 0
(2x - 1)[(2x - 1)² - 4x] = 0
(2x - 1)[(2x - 1)(2x - 1) - 4x] = 0
(2x - 1)[2x(2x - 1) - 1.(2x - 1) - 4x] = 0
(2x - 1)(4x² - 2x - 2x + 1 - 4x) = 0
(2x - 1)(4x² + 1) = 0
⇒ 2x - 1 = 0 hoặc 4x² + 1 = 0
*) 2x - 1 = 0
2x = 1
x = 1/2
*) 4x² + 1 = 0
4x² = -1 (vô lý vì 4x² ≥ 0 với mọi x)
Vậy x = 1/2
Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)
a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)
\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)
\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(P=\dfrac{4\sqrt{a}+4}{a-4}\)
b) Thay x=9 vào P ta có:
\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)
c) \(P< 0\) khi:
\(\dfrac{4\sqrt{x}+4}{a-4}< 0\)
Mà: \(4\sqrt{x}+4>0\)
\(\Rightarrow a-4< 0\)
\(\Rightarrow a< 4\)
kết hợp với Đk ta có:
\(0\le x< 4\)
1: Ta có: \(\left(3-x\right)^2+\left(2x+1\right)^2-\left(2-x\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-3+x-2\right)=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
2: Ta có: \(\left(1-2x\right)^2-3\left(x-1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow4x^2-4x+1-3x^2+6x-3+\left(x+1\right)^2-2\left(x-1\right)^2=0\)
\(\Leftrightarrow x^2+2x-2+x^2+2x+1-2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow2x^2+4x+1-2x^2+4x-2=0\)
\(\Leftrightarrow x=\dfrac{1}{8}\)
a: (x+2)(x-3)>0
nên x+2;x-3 cùng dấu
=>x>3 hoặc x<-2
b: (x-1)(x+4)<=0
nên x-1 và x+4 khác dấu
=>-4<=x<=1
\(A=x^3-2x+n\)
\(B=n-2\)
\(A\text{⋮}B\) ⇒ \(\left(x^3-2x+n\right)\text{⋮}\left(n-2\right)\)
⇒ \(\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)
⇒ \(\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)
⇒ \(\left[\left(x-2\right)\left(x^2+2x+2\right)+\left(n+4\right)\right]\text{⋮}\left(x-2\right)\)
Vì \(\left(x-2\right)\left(x^2+2x+2\right)\text{⋮}\left(n-2\right)\)
Để \(A\text{⋮}B\)
⇒ \(n+4=0\)
⇒ \(n=-4\)
`x^2 -12x +5 =0`
`<=> x^2-2*x*6 +6^2 +5 -6^2 =0`
`<=> (x-6)^2 -31 =0`
`<=> (x-6)^2 =31`
`=>`\(\left[{}\begin{matrix}x-6=\sqrt{31}\\x-6=-\sqrt{31}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{31}-6\\x=6-\sqrt{31}\end{matrix}\right.\)
=>x^2-12x+36-31=0
=>(x-6)^2=31
=>x-6=căn 31 hoặc x-6=-căn 31
=>x=căn 31+6 hoặc x=-căn 31+6
đặt \(t=x^2-5x+7\) pt thành \(t\ge0\)
\(t^2+t-2=0\) (t)
<=>\(\left(t-1\right)\left(t+2\right)=0\)
<=>\(\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)
so với điều kiện =>t=1 thỏa
=>\(x^2+-5x+7=1\)
<=> \(x^2-5x+6=0\)
<=>\(\left(x-2\right)\left(x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
KL vậy pt có 2 nghiệm là \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Hai bài bị trùng nhau nên các bạn nhìn ảnh hay văn bản đều như nhau ạ
c: =>x+2>0
hay x>-2
d: =>-4<=x<=3
e: =>\(x\in\varnothing\)
f: \(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -6\end{matrix}\right.\)