3 người đi xe đạp từ A đến B với các vận tốc không đổi. Người thứ nhất và người thứ 2 xuất phát cùng 1 lúc với các vận tốc v1=10km/h , v2=12km/h. Người thứ 3 xuất phát sau 2 người kia 30 phút, khoảng thời gian giữa 2 lần gặp của người thứ 3 với 2 người đi trước là 1 giờ. Tìm vận tốc của người thứ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi thời gian đi tới khi gặp xe một của xe ba là t3
thời gian đi tới khi gặp xe hai của xe ba là t3'
30'=0,5h
ta có:
lúc xe ba gặp xe một thì:
\(S_1=S_3\)
\(\Leftrightarrow v_1t_1=v_3t_3\)
do xe ba đi sau xe một 30' nên:
\(v_1\left(t_3+0,5\right)=v_3t_3\)
\(\Leftrightarrow10\left(t_3+0,5\right)=v_3t_3\)
\(\Leftrightarrow10t_3+5=v_3t_3\)
\(\Leftrightarrow v_3t_3-10t_3=5\)
\(\Rightarrow t_3=\frac{5}{v_3-10}\left(1\right)\)
ta lại có:
lúc xe ba gặp xe hai thì:
\(S_3=S_2\)
\(\Leftrightarrow v_3t_3'=v_2t_2\)
do xe hai đi trước xe ba 30' nên:
\(v_3t_3'=v_2\left(t_3'+0,5\right)\)
\(\Leftrightarrow v_3t_3'=12\left(t_3'+0,5\right)\)
tương tự ta có:
\(t_3'=\frac{6}{v_3-12}\left(2\right)\)
do thời gian gặp cả hai lần cách nhau một giờ nên:
t3'-t3=1
\(\Leftrightarrow\frac{6}{v_3-12}-\frac{5}{v_3-10}=1\)
\(\Leftrightarrow\frac{6\left(v_3-10\right)-5\left(v_3-12\right)}{\left(v_3-12\right)\left(v_3-10\right)}=1\)
\(\Leftrightarrow6v_3-60-5v_3+60=\left(v_3-12\right)\left(v_3-10\right)\)
\(\Leftrightarrow v_3=v_3^2-10v_3-12v_3+120\)
\(\Leftrightarrow v_3^2-23v_3+120=0\)
giải phương trình bậc hai ở trên ta được:
v3=15km/h
v3=8km/h(loại)
bn xem lại chỗ: k/c giữa 2 lần gặp của ng3 voi 2 ng đi trc là 1h?
(k thể như z dc vì v1 khác v2 nên k thể găp 2 ng cùng lúc 1h)
Gọi thời gian người 1 và người 2 đã đi đến khi người 3 đuổi kịp người 1 là t (h) \(\left(t>\frac{1}{2}\right)\)
Gọi vận tốc người 3 là x (km/h) ( x > 0 )
Thời gian người 3 đi đến khi gặp người 1 là: \(t-\frac{1}{2}\left(h\right)\) (xuất phát sau xe 1 30 phút)
Khi người 3 gặp người 1 thì: \(10t=x\left(t-\frac{1}{2}\right)\Rightarrow x=\frac{20t}{2t-1}\)
Thời gian người 2 đi đến khi gặp người 3 là: t + 1 (h)
Thời gian người 3 đi đến khi gặp người 2 là: \(t-\frac{1}{2}+1=t+\frac{1}{2}\left(h\right)\)
Khi người 3 gặp người 2 thì: \(12\left(t+1\right)=x\left(t+\frac{1}{2}\right)\)
\(\Leftrightarrow12\left(t+1\right)=\frac{20t}{2t-1}.\left(t+\frac{1}{2}\right)\)
Biến đổi tiếp ta được \(t=\frac{3}{2}\left(h\right)\)
\(x=\frac{20t}{2t-1}=\frac{20.\frac{3}{2}}{2.\frac{3}{2}-1}=\frac{30}{2}=15\left(km/h\right)\)
Vận tốc người 3 là 15 km/h
Câu 1)
Người thứ nhất đi đc trong 30p
\(s_1=v_1t=10,0.5=5\left(km\right)\)
Ng thứ 2 đi đc trong 30p
\(s_2=v_2t=12.0,5=6km\)
Gọi v3 là vận tốc của ng thứ 3, t1 t2 là khoảng tgian khi ng thứ 3 xuất phát và gặp ng thứ nhất và ng thứ 2
Khi ng thứ 3 gặp ng thứ nhất
\(v_3t_1=5+10t_1\\ \Rightarrow t_1=\dfrac{5}{v_3-10}\left(1\right)\)
Khi gặp ng thứ 2
\(v_3t_2=6+12t_2\\ \Rightarrow t_2=\dfrac{6}{v_3-12}\left(2\right)\)
Theo đề bài + từ (1) và (2)
\(\Rightarrow v_3=15km/h\)
Khi người thứ ba gặp người thứ nhất:
\(x_1=x_3\)\(\Rightarrow10t=v_3\left(t_1-\dfrac{2}{3}\right)\)\(\Rightarrow t_1=\dfrac{\dfrac{2}{3}v_3}{v_3-10}\)
Khi người 3 cách đều người 1 và người 2:
\(x_3=\dfrac{x_1+x_2}{2}=\dfrac{10t_2+20t_2-10}{2}=15t_2-5\left(km\right)\)
\(\Rightarrow v_3\cdot\left(t_2-\dfrac{2}{3}\right)=15t_2-5\)
Ta có: \(t_2-t_1=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{\dfrac{2}{3}v_3-5}{v_3-15}-\dfrac{\dfrac{2}{3}v_3}{v_3-10}=\dfrac{2}{3}\)
\(\Rightarrow\left[{}\begin{matrix}v_3=18,43\\v_3=4,07\end{matrix}\right.\)
giải
đổi 30phút=0,5h
trong 0,5h đó người thứ nhất đi được
\(s1=v1.t=10.0,5=5\left(km\right)\)
thời gian mà người 3 gặp người thứ nhất là
\(t_{g1}=\frac{s1}{v3-v1}=\frac{5}{v3-10}\left(1\right)\)
trong 0,5h, người thứ hai đi được
\(s2=v2.t=12.0,5=6\left(km\right)\)
thời gian người ba gặp người thứ hai là
\(t_{g2}=\frac{s2}{v3-v1}=\frac{6}{v3-12}\left(2\right)\)
từ (1) và (2) ta có phương trình
\(\frac{6}{v3-12}-\frac{5}{v3-10}=1\left(h\right)\)
\(\Rightarrow\frac{6v3-60-5v3+60}{\left(v3\right)^2-22v3+120}=\frac{v3}{\left(v3\right)^2-22v3+120}=1\)
\(\Rightarrow\left(v3\right)^2-22v3+120=0\)
\(\Rightarrow\left(v3\right)^2-15v3-8v3+120=0\)
\(\Rightarrow\left(v3-15\right).\left(v3-8\right)\)
\(\Rightarrow v3=8km/h\) hoặc \(v3=15km/h\)
mà v3>v2
\(\Rightarrow v3=15km/h\)