Cho hình vuông ABCD có H và K lần lượt là trung điểm của các cạnh AB và AD. Trên đường thẳng vuông góc với (ABCD) tại H lấy điểm S khác H.
Chứng minh: CK vuông góc với SD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo:
a) Tam giác ABD có HK là đường trung bình nên HK//BD
Vì ABCD là hình vuông nên AC⊥BD. Suy ra AC⊥HK
Vì SH⊥(ABCD) nên SH⊥AC
Ta có: AC⊥SH,AC⊥HK nên AC⊥(SHK)
b) Ta có tam giác AHD và tam giác DKC bằng nhau nên DH⊥CK
Mà SH⊥(ABCD) nên SH⊥CK
Suy ra CK⊥(SDH)
a: Xét tứ giác ABCD có
O là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét ΔOHA vuông tại H và ΔOKC vuông tại K có
OA=OC
\(\widehat{AOH}=\widehat{COK}\)
Do đó: ΔOHA=ΔOKC
=>OH=OK
=>O là trung điểm của HK
Tham khảo hình vẽ. Ta sẽ sử dụng công thức
Đặt SA = x (x > 0) Tính được
Chứng minh được
Khi đó
Xét hàm ta có
Suy ra thể tích khối tứ diện lớn nhất bằng
Chọn C.
a) Ta có:
\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CB\)
\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AB \bot CB\)
\( \Rightarrow CB \bot \left( {SAB} \right)\)
\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CD\)
\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AD \bot CD\)
\( \Rightarrow CD \bot \left( {SAD} \right)\)
b) Ta có:
\(\left. \begin{array}{l}CB \bot \left( {SAB} \right) \Rightarrow CB \bot AH\\AH \bot SB\end{array} \right\} \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)
\(\left. \begin{array}{l}CD \bot \left( {SAD} \right) \Rightarrow CD \bot AK\\AK \bot SD\end{array} \right\} \Rightarrow AK \bot \left( {SC{\rm{D}}} \right) \Rightarrow AK \bot SC\)
\( \Rightarrow SC \bot \left( {AHK} \right) \Rightarrow SC \bot HK\)
\(\begin{array}{l}\Delta SAB = \Delta SA{\rm{D}}\left( {c.g.c} \right) \Rightarrow SH = SK,SB = S{\rm{D}}\\\left. \begin{array}{l} \Rightarrow \frac{{SH}}{{SB}} = \frac{{SK}}{{S{\rm{D}}}} \Rightarrow HK\parallel B{\rm{D}}\\SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot B{\rm{D}}\end{array} \right\} \Rightarrow SA \bot HK\end{array}\)
\(\left. \begin{array}{l}SC \bot HK\\SA \bot HK\end{array} \right\} \Rightarrow HK \bot \left( {SAC} \right) \Rightarrow HK \bot AI\)