K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Ta có: AE là tia phân giác góc trong tại đỉnh A

      AF là tia phân giác góc ngoài tại đỉnh A

Suy ra: AE ⊥ AF (tính chất hai góc kề bù)

Vậy AE ⊥ DF.

15 tháng 9 2019

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

a: góc AHM+góc AKM=180 độ

=>AHMK là tứ giác nội tiếp

b: góc HBM=180 độ-góc ABM

góc KCM=180 độ-góc ACM

góc ABM=góc ACM

=>góc HBM=góc KCM

mà góc MHB=góc MKC

nên ΔMBH đồng dạng với ΔMCK

=>MB/MC=MH/MK

=>MB*MK=MC*MH

a:góc AHM+góc AKM=180 độ

=>AHMK nội tiếp

b: góc MBH+góc ABM=180 độ

góc MCK+góc ACM=180 độ

góc ABM=góc ACM

=>góc MBH=góc MCK

mà góc MHB=góc MKC

nên ΔMHB đồng dạng vơi ΔMKC

=>MH/MK=MB/MC

=>MH*MC=MK*MB

3 tháng 4 2023

 

a) Theo đề bài, ta thấy \(\widehat{AHM}=\widehat{AKM}=90^o\) nên dễ dàng suy ra tứ giác AHMK nội tiếp do 2 góc đối bù nhau.

b) Do tứ giác AHMK nội tiếp nên \(\widehat{HMK}+\widehat{A}=180^o\). Tứ giác ABMC nội tiếp nên \(\widehat{BMC}+\widehat{A}=180^o\). Từ đó suy ra \(\widehat{HMK}=\widehat{BMC}\) hay \(\widehat{BMH}=\widehat{CMK}\). Lại có \(\widehat{MHB}=\widehat{MKC}=90^o\) nên \(\Delta MHB~\Delta MKC\left(g.g\right)\) \(\Rightarrow\dfrac{MH}{MK}=\dfrac{MB}{MC}\) \(\Rightarrowđpcm\)