K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
5 tháng 3 2020

Lời giải:
Giả sử \(b=\text{mid}(a,b,c)\Rightarrow (b-a)(b-c)\leq 0\)

\(\Leftrightarrow b^2+ac\leq bc+ba\)

\(\Rightarrow b^2a+a^2c\leq abc+a^2b\)

\(\Rightarrow ab^2+bc^2+ca^2\leq abc+a^2b+bc^2\)

Lại có, áp dụng BĐT AM-GM:

\(abc+a^2b+bc^2=b(ac+a^2+c^2)\leq b(2ac+a^2+c^2)=b(a+c)^2=\frac{1}{2}.2b(a+c)(a+c)\)

\(\leq \frac{1}{2}\left(\frac{2b+a+c+a+c}{3}\right)^3=\frac{1}{2}\left(\frac{2(a+b+c)}{3}\right)^3=4\)

Vậy $P_{\max}=4$ khi $(a,b,c)=(2,1,0)$ và hoán vị.

10 tháng 1 2018

Đáp án A.

Gọi A(a;0;0); B(0;b;0); C(0;0;c) (a; b; c > 0)

→ Phương trình mặt phẳng (P) là

* PS: do a; b; c > 0 nên chỉ có đáp án A thỏa mãn.

Câu 20: Tam giác ABC vuông tại B suy ra:   A.  AC2  = AB2 + BC2 ­                                   B.  AC2  = AB2 - BC2   C.  BC2  = AB2 + AC2                                    D.  AB2  = BC2 + AC2Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?   A.  Tại ...
Đọc tiếp

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 900                       D. ∠A = 900

Ai giúp mình với ạ!

1
13 tháng 3 2022

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 90                      D. ∠A = 900

24 tháng 2 2022

Ghi lại đề đi bn cho cái j vuông tại B

24 tháng 2 2022

C

6 tháng 3 2020

ĐÉO BIẾT.:)Giang béo!:)

6 tháng 3 2020

a,b,c \(\ge\)0 và a + b + c =3 \(\Rightarrow a,b,c< 4\)

giả sử b là số nằm giữa a,c thì ( b - a ) ( b - c ) \(\le\)0

\(\Leftrightarrow b^2+ac\le ab+bc\Rightarrow ab^2+a^2c\le abc+a^2b\)

\(\Rightarrow ab^2+bc^2+ca^2\le abc+a^2b+bc^2\le a^2b+bc^2+2abc=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Cần chứng minh \(b\left(3-b\right)^2\le4\Leftrightarrow b^3-6b^2+9b-4\le0\Leftrightarrow\left(b-1\right)^2\left(b-4\right)\le0\)( luôn đúng )

Vậy GTLN của P là 4 khi ( a,b,c ) là hoán vị của bộ số ( 0 ; 1 ; 2 )

17 tháng 7 2019

Tìm GTNN của P=a^7+b^7+c^7 biết a^3b^3+b^3c^3+c^3a^3>=1 - Sasu ka

18 tháng 9 2017

Đáp án A.

3 tháng 10 2019

\(\sqrt{x}\)

28 tháng 9 2019

Ta có: 

\(\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2=2\left(a+b+c\right)\)

=> \(\left(a+b+c\right)^2-6\left(a+b+c\right)\le0\)

=> \(0\le a+b+c\le6.\)

\(T=\frac{a}{a+1}+\frac{b}{b+a}+\frac{c}{c+1}=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)

\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\le3-\frac{\left(1+1+1\right)^2}{a+b+c+3}\le3-\frac{3^2}{6+3}=2\)

"=" xảy ra <=> \(a=b=c\)và \(a+b+c=6\)<=> \(a=b=c=2\)

Vậy max T = 2 khi và chỉ khi a=b=c =2