Cho hình thang ABCD,AB//CD.Lấy M,N lần lượt trên các cạnh AB,AD sao cho \(\frac{AM}{MB}=\frac{DN}{NC}\).CM: MN đi qua O (O là giao điểm của AD và BC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-OM cắt DC tại N'.
\(\dfrac{AM}{DN}=\dfrac{MB}{NC}=\dfrac{AM+MB}{DN+BC}=\dfrac{AB}{DC}\)
-Xét △ODN' có: AM//DN'.
\(\Rightarrow\dfrac{AM}{DN'}=\dfrac{OM}{MN'}\) (hệ quả định lí Ta-let) (1)
-Xét △OCN' có: BM//CN'.
\(\Rightarrow\dfrac{BM}{CN'}=\dfrac{OM}{MN'}\) (định lí Ta-let) (2)
-Từ (1) và (2) suy ra:
\(\dfrac{AM}{DN'}=\dfrac{BM}{CN'}=\dfrac{AM+BM}{CN'+DN'}=\dfrac{AB}{CD}\)
\(\Rightarrow\dfrac{AM}{CN'}=\dfrac{BM}{DN'}=\dfrac{AM}{CN}=\dfrac{BM}{DN}\)
\(\Rightarrow CN=CN';DN=DN'\)
\(\Rightarrow N\equiv N'\)
-Vậy MN đi qua điểm O.
a: Xét tứ giác ABCD có
O là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét ΔOAI và ΔOCN có
góc AOI=góc CON
OA=OC
góc OAI=góc OCN
=>ΔOAI=ΔOCN
=>AI=NC
=>AI=MN
mà AI//MN
nên AINM là hình bình hành
=>AM//IN
b) O là trung điểm của BD mà ABCD là hình chữ nhật nên đường chéo thứ hai AC phải qua O.
Lại có tứ giác BMDN là hình bình hành nên MN phải đi qua trung điểm O của BD.
Vậy AC, BD, MN đồng quy tại O.
Áp dụng hệ quả của định lí Ta-lét,ta có :
\(\Delta AMO\)có NC // AM\(\Rightarrow\frac{NC}{MA}=\frac{ON}{OM}\left(1\right)\)
\(\Delta MBO\)có ND // MB\(\Rightarrow\frac{ND}{MB}=\frac{ON}{OM}\left(2\right)\)
\(\Delta ADB\)có OP // AB\(\Rightarrow\frac{OP}{AB}=\frac{OD}{DB}\left(3\right)\)
\(\Delta ACB\)có OQ // AB\(\Rightarrow\frac{OQ}{AB}=\frac{OC}{AC}\left(4\right)\)
\(\Delta ODC\)có AB // CD\(\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\left(5\right)\)
Từ (1) và (2),ta có\(\frac{NC}{MA}=\frac{ND}{MB}\Rightarrow\frac{NC}{ND}=\frac{MA}{MB}=k\Rightarrow\frac{ND}{NC}=\frac{1}{k}\)
Từ (3),(4) và (5),ta có\(\frac{OP}{AB}=\frac{OQ}{AB}\)=> OP = OQ => O là trung điểm PQ